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Abstract 
In this paper, the run-up flow of an incompressible, viscous electrically conducting fluid in an annulus 

formed by two infinitely long concentric cylinders is considered. The flow is initially induced by a 

constant pressure gradient parallel to the direction of the fluid flow, when steady state is attained, the 

pressure gradient is suddenly withdrawn while the inner cylinder is impulsively started in the 

direction of the fluid flow  and the outer cylinder continues to be at rest. For that, the governing 

equations are simplified by using reasonable dimensionless parameters. Laplace transform technique  

is then employed to obtain the solutions of  the velocity in Laplace domain. Consequently, Riemann-

sum approximation is then used to invert the obtained solutions into the corresponding time domain, 

and the skin friction on both cylinders are calculated. More so, expressions are obtained for the 

velocities for both cases of the applied magnetic field being fixed relative to either the fluid or the 

moving inner cylinder. As a result, the influence of the various parameters such as the Hartmann 

number, pressure gradient on the velocity and skin friction is discussed by the use of graphs. It is 

found that the fluid velocity increases with increase in time   and subsequently decreases. It is also 

discovered that the fluid velocity increases with the increase in pressure gradient  . In addition, a 

reversal of flow is observed when the orientation of the pressure gradient is reversed. The fluid 

velocity is seen to decrease with the increase in   when the magnetic lines of force are fixed relative 

to the fluid and increases when fixed relative to the moving inner cylinder.  The results provided useful 

information to engineers to improve efficiency and performance of machines. 
 

Keywords: Run-up flow, MHD, Couette flow, Poissuielle flow, Annulus, Pressure gradient, Riemann-

sum, Transverse magnetic field, and Impulsive motion. 
 

NOMENCLATURE 

  Radius of the inner cylinder 

  Radius of the outer cylinder 

  Speed of light       

  Width of the plates 

  Constant uniform magnetic field 

 ⃗  Magnetic flux 

 ⃗  Magnetic field 

   Current density 

 ⃗  Electric field 

   Lorentz force 

    Body force 

   Zero-order modified Bessel function of the first kind 

  Zero-order modified Bessel function of the second kind 

   First-order modified Bessel function of the first kind 

   First-order modified Bessel function of the second kind 

  Dimensionless interaction coefficient 



99 
 

  Laplace parameter 

  Hartmann number 

   Dimensional time 

  Dimensionless time 

   Initial velocity 

  Constant 

  Dimensionless velocity component of vector field  ⃗  

  ,  ,    Components of velocity field   ⃗  

       Dimensionless velocity components 

   Dimensionless radial velocity 

  Dimensionless angular velocity 

  Dimensionless axial velocity 

  Dimensional pressure 

  Dimensionless pressure 
 

GREEK 

  Annulus dimension ratio 

  Mass density of the fluid        ) 

  Electrical conductivity 

   Skin friction 

  Kinematic viscosity (    ) 

  Dynamic viscosity (     ) 

  Laplacian operator 

 

Introduction 

The first serious theoretical and experimental work on liquid metal MHD flows was carried 

out by Hartmann and Lazarus [5]. These flows received much attention from theoreticians 

because the equations are linear but the phenomena are neither trivially simple nor physically 

unattainable in the laboratory. Annular geometry is widely employed in the gas cooled 

nuclear reactors whereby cylindrical fissionable fuel elements are placed axially in vertical 

coolants channel parallel to the fuel element and also in drilling operations of oil and gas 

well. Makinde et al. [16] studied Magneto hydrodynamic viscous flow in a porous medium 

cylindrical annulus with an applied radial magnetic field. Jha and Apere [7] studied the 

unsteady MHD Couette flows in annuli: Riemann-sum Approximation Approach. It was 

found that; Hartmann number   has a decreasing effect on the fluid velocity when the 

magnetic field is fixed relative to the fluid.  An increase in velocity with the increase in   is 

observed to occur when the magnetic field is fixed relative to the moving outer cylinder. 

The pressure gradient force is responsible for triggering the initial movement of 

fluid. The fluid flow experiences phenomenon termed run-up flow which arises due to 

sudden withdrawal of the pressure gradient causing the fluid flow while one of its boundaries 

instantaneously move from rest. Under this phenomenon, steady flow in the unperturbed 

state gains unsteadiness later. This work studies the run-up flow of an electrically conducting 

fluid between annulus formed by two concentric cylinders in the presence of transverse 

magnetic field. The fluid motion is initially due to pressure gradient   acting in the same 

direction as the motion of the fluid. As the steady state is attained, the pressure gradient is 
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suddenly withdrawn and the inner cylinder is set into motion instantaneously with a constant 

velocity in the direction of the applied pressure gradient. The problem is solved using 

Laplace transform technique. The solution from the Laplace domain is inverted to the time 

domain using Riemann-sum approximation method of Laplace inversion. The effects of 

pressure gradient and Hartmann number on the flow are investigated. 
The run-up flow of viscous incompressible fluid between solid boundaries is an active 

area of study by researchers in recent years due to its potential applications in several branches of 

technology related to petroleum industry, chemical and bio-chemical industry, ceramic industry, 

paper technology, extraction of energy from geo-thermal regions, lubrication etc. Several 

investigations have been conducted  in the field of run-up flow. However, to cite  few works in 

this direction, Kazakia and Rivlin [10] started the study of run-up and spin-up flows. Rivlin [22, 

23] later investigated the run-up and spin-up flows of viscoelastic fluids between rigid parallel 

plates and circular geometries. Run-up flow in a generalized porous medium is studied by 

Ramacharyulu and Raju [20]. Run-up flow of a couple stress fluids between parallel plates is 

discussed by Devaka and Iyengar [3]. They observed that there is a critical interval of the couple 

stress parameter, wherein as the parameter increases the velocity increases; outside this critical 

interval, for the range of values of the parameter taken, as it increases, the velocity decreases. A 

run-up flow of an incompressible micropolar fluid between parallel plates - A state space 

approach was discussed by Devaka and Iyengar [4]. It was found that the microrotation 

components are symmetric about       when the two plates move with the equal velocity. As 

the pressure gradient is increased, there is an increase in velocity. Qadri and Krishna [18] studied 

run-up flow of a Maxwell fluid through a parallel plate channel. It was found that the velocity 

increases with the increase, however in both Reynolds`s number and Maxwell`s fluid parameter 

and reduces with the increasing pressure gradient. MHD run-up flow of a Maxwell fluid through 

a porous medium in a parallel plate channel is investigated by Qadri and Krishna [19]. Reddy 

[21] studied numerical solution of run-up flow through a rectangular pipe. He found that at large 

Reynolds’s  number, the velocity distribution along the symmetric line       takes the form of a 

damping wave. At the initial stages, the velocity at any nodal point decreases with time in an 

uneven fashion. The run-up introduces local maxima and minima in the region. At small 

Reynolds`s number, the velocity distribution in the region        , to         is almost 

constant for large time    . 

Hussain and Ramacharyulu [6] considered an unsteady viscous incompressible flow 

in a porous medium between two impermeable parallel plates impulsively stopped from a 

relative  motion. It is noticed that the effect of porosity on the velocity profiles is of flatten  

type with the velocity attaining maximum near the middle of the plates and due to friction, it 

decrease towards the plates. Hall effects on run-up flow of Rivlin-Ericksen fluid in a parallel 

channel bounded by porous bed on the lower half is investigated by Krishna and Qadri [12]. 

It is discovered that, the resultant velocity in the clean fluid region reduces with increasing 

Hartmann number   , inverse Darcy number   , or ratio of the viscosities, and enhances 

with visco-elastic parameter   irrespective of the thickness of the porous bed. Run-up Flow 

of Oldroyd-B   Fluid through a Parallel plate channel is another research work by Krishna 

and Qadri [12]. It is found that: The magnitude of the velocity enhances with increasing 

Reynolds number, both material parameters as well as time. When pressure increases the 

velocity diminishes throughout the fluid region. Both the stresses rise with Reynolds number. 

Mass flux reduces with pressure and develops with Reynolds number, material parameters 

and time. 
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In all these analyses,  none was carried out taking account the effect of electric 

conduction of the fluid when transverse magnetic field is acting normal to the direction of the 

fluid flow, a Riemann-sum approach. This paper, intends to examine the unsteady run-up 

flow of an electrically conducting fluid in the presence transverse magnetic field in annulus. 

The effect of pressure gradient, Hartmann number, and time are discussed with the aid of line 

graphs. 

 

Formulation of the problem 
Suppose the flow of a viscous, incompressible, electrically conducting fluid trapped in 

the annular gap between two infinite rigid non-conducting horizontal cylinders              
   along the direction in the   axis in the presence of transverse magnetic field is considered. At  

  , the two cylinders are at rest and the constant pressure gradient   applied parallel to the flow 

set the fluid in motion. When the flow fully developed, at       the inner cylinder is set into 

motion with a uniform velocity      in the direction of the applied pressure gradient and the 

outer cylinder is still at rest. Assuming the magnetic Reynolds's number is very small which 

corresponds to negative negligible induced magnetic field and the Hall effects of MHD are 

negligible. No applied polarization voltage exists ( ⃗   ), that is to say no energy is added or 

removed in the system, Sutton and Sherman [24]. The uniform magnetic field  ⃗            

since the magnetic field is along  -direction,  ⃗    ⃗     which the total magnetic field acting 

perpendicular to the direction of the flow. Using polar coordinate system (        ) with    
            acting on each of the axes respectively. For unidirectional flow,        , we take 

the  velocity               ) which satisfies the continuity equation. 
 

MHD Initial state for run-up flow 

In the initial state, consider the steady flow of a viscous, incompressible, electrically 

conducting fluid in annulus in the presence of transverse magnetic field under the influence 

of constant pressure gradient.  Using the assumptions above for a cylindrical geometry, the 

equation of motion with electromagnetic force added for an incompressible electrically 

conducting fluid is: 
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Where     is the component of the magnetic force in the direction of    axis, the  fluid. 
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 We define the dimensionless variables  
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Subject to the initial and boundary conditions; 
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Since the motion is steady, 
  

  
    and    

  

  
   , 

Equation (4) takes the dimensionless form;      (7) 

Equation (7) is solved subject to the boundary conditions; 
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   and     are the zero-order modified Bessel functions of the first and second kind 

respectively. 
 

 MHD Run-up flow 

In this state, the two cylinders are hitherto stationary, if the inner cylinder is impulsively set 

into motion along the direction of the applied pressure gradient with a constant velocity    

while the applied pressure gradient in instantaneously withdrawn. As the resultant flow is 

time dependent, 

we assume that 

            and     –  
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Equation (10) is valid if the magnetic field is fixed relative to the moving fluid. If however, 

the magnetic field is fixed relative to the inner cylinder, then, equation (9) becomes;  
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Where 

 

 

 

 
Combining (10) and (11), we get 
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Equation (12) is solved, subject to the initial and boundary conditions; 

                        

        {
                  
                  

                                                   (13) 

 Solution of the problem 

Applying Laplace transform on equation (12), gives; 

   ̅

   
 

 

 

  ̅

  
        ̅          

     

 
 

OR 
   ̅

    
 

 

  ̅

  
        ̅            

 

   
     

 
                  (14) 

Where 

           ̅      ∫                  
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The initial and boundary conditions (13) in Laplace domain are: 

             for       

    {
 ̅      

  

 
              

 ̅                      
                                                      (16) 

Equation (14) subject to the initial and boundary conditions (16) have the following solution; 
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Riemann-sum approximation 

Equation (17) is to be inverted so as to determine the velocity in the time domain. It is very 

difficult to invert this equation in closed form; applying a numerical procedure used in Jha 

and Apere [11] which is based on the Riemann-sum approximation. In this method, any 

function in the    domain can be inverted in the time domain as follows: 
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 ̅        ∑  ̅ (    

   

 
)       

   +                           (18) 
 

Where    refers to the real part,   √    is the imaginary number,    is the number of 

terms used in the Riemann-sum approximation and   is the real part of the Bromwich contour 

𝐾   

                𝑤 𝑒𝑛  𝐵  𝑖𝑠 𝑓𝑖𝑥𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡 𝑒 𝑓𝑙𝑢𝑖𝑑 

            𝑤 𝑒𝑛  𝐵  𝑖𝑠 𝑓𝑖𝑥𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡 𝑒  𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 
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that is used in  inverting the Laplace transforms. The Riemann-sum for the Laplace inversion 

involves  a single summation for the numerical process. Its accuracy depends on the value of    

and the truncation error dictated by  . According to Jha and Apere [11], the value of t must be 

selected so that the Bromwich contour encloses all the branch points . For faster convergence, 

       gives the most satisfactory results.  

The skin friction coefficient   which is the frictional force between the fluid and the boundaries is 

obtained by differentiating equation (17) with respect  to   . 
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The skin frictions on the inner and outer cylinders (     ) and (       respectively from equation (16); 
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Results and Discussion 
To examine the effects of the various parameters on the fluid motion, MATLAB programme is 

adopted to generate graphs for velocity and skin frictions, and are presented in Figures. 3 - 8.  

Fig. 3 shows the velocity ( ) profiles  against the radius   for different values of    which depicts 

the effects of time   on the velocity.  It is observed that the velocity increases with the increase in 

  gradient when the magnetic lines of force are fixed relative to the fluid (     ) or when fixed 

relative to the inner cylinder (      . Figs.4 and 5 show the effect of pressure gradient   on the 

velocity. As   increases, the velocity increases for both (     ) and (     ). It is interesting 

to see that a reversal of flow occurs for          when       and             when  

(     ).  Fig. 5 depicts the effect of Hartmann number   on the velocity. The velocity is 

observed to decrease with the increase in   for (     ) as shown in fig.5 (a) and increases with 

increase in   for (     ) as observed in fig. 5(b).  The effect of skin friction on the surface of 

the two cylinders on time   for different   is presented in figures 7 and 8. It is observed that   

has a decreasing effect on    when (     ) and increasing when (     ) on both cylinders. 
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Fig.3: Velocity profile for different values of t with K=0 and K=1 represented by (a) and (b) 

respectively with                    
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A                                         B 

ig.4: Velocity profile  for different values of G with K=0 and K=1 represented by (a) and (b) 

respectively with                     

         
A                                         B 

Fig.5: Velocity profile  for different values of (-G) with K=0 and K=1 represented by (a) and (b) 

respectively with                     

A                                         

B 
Fig.6: Velocity profile  for different values of M with K=0 and K=1 represented by (a) and (b) 

respectively with                     
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A                                         

B 

Fig.7: Variation of the skin friction with time at the outer surface of the inner cylinder (   ) for 

different values of   with     and     represented by (a) and (b) respectively. 

    A                                         

B 

Fig.8: Variation of the skin friction with time at the inner surface of the outer cylinder (   ) for 

different values of   with     and     represented by (a) and (b) respectively. 

 Summary and Conclusion 

This paper investigates the run-up flow of an electrically conducting fluid in the presence of 

trans-verse magnetic field taking account the effect of pressure gradient in annulus. A 

solution is presented for velocity and dimensionless skin frictions. The influence of each 

governing parameters on the fluid flow is discussed with aid of line graphs. The parameters 

in this work are pressure gradient     and Hartmann number      It is observed that the 

velocity increases with the increase in time and later fades away with time. As the pressure 

gradient   increases, the velocity increases. The velocity decreases with the increase in 

Hartmann number M when magnetic lines of force are fixed relative to the fluid         

and increases when fixed relative to the moving inner cylinder        . The skin friction   

is observed to be decreasing as a result in the increase in Hartmann number M when 

magnetic lines of force are fixed relative to either fluid         or to the cylinder, and 

increase in   is observed for       on both cylinders       and         
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