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Abstract 

Most numerical methods for solving Initial Value Problems (IVPs) of Ordinary Differential 

Equations (ODEs) are based on the local representation of the theoretical solution to 

problems near singular or singular IVPs by polynomials in h  and this presents poor 

integration of the IVPs. Rational methods are found suitable for numerical solution of such 

problems thus, in this paper we derive and implement a new numerical method based on the 

rational approximation of the theoretical solution of singular IVPs. Numerical examples are 

presented. 
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Introduction 

Some differential equations of the form:  
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 possess some kind of properties which make them very difficult to obtain a solution or the 

numerical solution may present very poor integration. Such properties are the property of 

Singularity and Stiffness. The convetional one-step scheme is given by:  
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 where 
n  is the incremental function and the conventional Linear Multistep Method (LMM) 

is described by:  
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 Since the usual formulation in (2) is exclusively based on the local representation of the 

theoretical solution to problem (1) by polynomials in h, the resultant algorithms generally 

perform poorly when the IVP is stiff or when its solution possess singularity. 

In general, the theory of ordinary nonlinear differential equations offers no clue as to the 

singularities of the solutions of such equations. Thus, the detection of singularities must be 

accomplished heuristically. Obviously the usual numerical integration techniques fail in the 

region of such singularity, but also the location of such a point evades detection (Luke et al., 

1975). Hence, new techniques must be developed which will deal effectively with the 

problem of singularities of solutions to nonlinear differential equations. 

mailto:muioxygen@gmial.com
mailto:raphade@unilorin.edu.ng


120 
 

Over the years, several studies have been carried out and until now, three classes of methods 

have been used successfully in the numerical solution of singularity IVPs. The categories of 

methods include: perturbed polynomial methods due to Lambert (1974); rational methods 

given by Lambert et al. (1965), Luke et al. (1975), Fatunla (1982, 1986), Van Niekerk (1987, 

1988) Otunta et al. (1999), Ikhile (2002), Odekunle et al. (2004), Okosun et al. (2007), Teh 

(2014), and Garwood et al. (2016); extrapolation methods used by Fatunla (1986), and Ikhile 

(2002, 2004). Rational methods are found suitable for the numerical solution of singular 

IVPs when the zeros of the denominator are the singularities of the IVPs. The use of rational 

functions as aproximants has been studied by many authors, but the main concern of most of 

this work has been direct approximation of a given function. 
 

Method of Study 

Given that the IVP as defined below has the property of singularity,  
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 We suggest an approximation to the theoretical solution )( 1nxy  of (4) by:  
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 where bmiai ),(0;   are parameters to be determined and they contain approximation of 

ny  and higher derivatives of .ny  

From (5), we define the difference operator as:  
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where )(xy  is a continuous and differentiable function on  ],[ bax  

Expanding )( hxy n   in Taylor’s series and collecting terms in (6), we obtain:  

 ......=]);([ 1

1

2

21  



k

k

k

k hchchchcchxyl              
(7) 

where ),...,1,0,1,2,...,=( mkkici   contain corresponding parameters which need to be 

determined. 
 

Definition 

A numerical scheme is said to be of order kp =  if in the difference equation (7),  

 0,==...=== 21 kcccc  

and  
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and the local truncation error, LTE = ).( 21
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We now expand (5) by Taylor’s series and collect terms.  
 

CASE I: 1=m  (SECOND ORDER RATIONAL METHOD) 

With 1=m  in (5) together with (6), we have:  
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Setting 0=== 21 ccc , we have:  
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and subtituing into (8), we obtain the corresponding one-step second order formula:  
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 with the difference equation, the local truncation error is obtained as:  
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CASE II: 2=m  (THIRD ORDER RATIONAL METHOD) 

With 2=m  in (5),  
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Thus by virtue of (6) and (7), we have:  
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Setting 0==== 321 cccc , we have:  
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and substituing into (11), we obtain the corresponding one-step third order formula:  
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 with the difference equation, the local truncation error is obtained as:  
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CASE III: 3=m  (FOURTH ORDER RATIONAL METHOD) 

With 3=m  in (5),  
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By virtue of (6) and (7), we have:  
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Setting 0===== 4321 ccccc , we have:  
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and substituing into (14), we obtain the corresponding one-step fourth order formula:  
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 with the difference equation, the local truncation error is obtained as:  
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Stability of Methods 
Definition (Lambert 1991): A numerical method is said to be L-stable if it is A-stable and in 

addition, when applied to the scalar test problem:  

 0,<)(,=  Reyy  

it yields  

 .=,)(=1 hzyzRy nn
 

where  

 .)(    0|)(|  zReaszR  

 

The obtained formulae in cases I, II and III are used to solve the scalar test problem:  

 0<)(,=  Reyy  

as described by Dahlquist to test for stabilty and they all satisfy the definition of Lambert (1991). 

It was proven to be stable with L-stability. 

 

General Formula of the Method 

The generalization of the method is of course needful, so we therefore obtained a generalized 

form as:  
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we take 
nn yy =(0)
 and 1= mp  where =p order of the method, =m  the approximation term 

and =n iteration number. 

This method has an advantage of estimating the error apriori and the general form is as follow:  
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Results and Discussion 

In this section, we implement the fourth order method obtained in (15) to illustrate the accuracy 

of the method. All computaions were carried out with a written MATLAB code. Let )( nxy  be 

the theoretical solution and 
ny  the approximate solution in the range [0,1]x . We find the 

maximum absolute error by .|)(| nn yxy   

Example 1: Consider the non-singular IVP:  

 1=(0) ;2
2

1
= yyxy   

with theoretical solution given by:  

 
2

=)( 2 x
exy x   

Here, we shall compare the performance of the New Basic Rational Approximation Method for 

Solving Singular Initial Value Problems of Ordinary Differential Equations (NBRAM) of order 4 

with the classical Runge-Kutta method of order 4 (RK4), Lambert (1965) of order 4 and Van 

Niekerk (1988).  
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Example 2:      1=(0) ;1= 2 yyy   

with the theoretical solution given by: /4)(=)( xtanxy  

Also, we compare the performance of NBRAM of order 4 with Lambert (1965) of order 4, 

RK4 and Garwoodet al. (2016).  

Table 1. Absolute errors for 0.1=1,=(0) ;2
2

1
= hyyxy   

nx  )( nxy   RK4  Lambert (1965)  Niekerk (1988)  NBRAM 

0.0000000000  1.0000000000  0.000
010  0.000

010  0.000
010  0.000

010  

0.1000000000  1.2714027582  1.107
210  1.107

210  2.989
210  1.107

210  

0.2000000000  1.5918246976  2.460
210  2.459

210  6.726
110  2.459

210  

0.3000000000  1.9721188004  4.112
210  4.110

210  1.146
110  4.110

210  

0.4000000000  2.4255409285  6.130
210  6.127

210  1.750
110  6.127

210  

0.5000000000  2.9682818285  8.594
210  8.591

210  2.520
110  8.591

210  

0.6000000000  3.6201169227  1.116
110  1.527

110  3.501
110  1.160

110  

0.7000000000  4.4051999668  1.528
110  1.153

110  4.751
110  1.528

110  

0.8000000000  5.3530324244  1.977
110  1.976

110  6.341
110  2.176

110  

0.9000000000  6.4996474644  2.526
110  2.525

110  8.359
110  2.525

110  

1.0000000000  7.8890560989  3.196
110  3.191

110  1.091
010  3.194

110  

  Table 2. Absolute errors for 0.05=1,=(0) ;1= 2 hyyy   

nx  )( nxy  Lambert 

(1965)  

RK4  Garwoodet al. 

(2016) 

NBRAM 

0.0000000000  1.0000000000  0.000
010  0.000

010  0.000
010  0.000

010  

0.1000000000  1.2230488804  7.534
810  2.153

810  2.368
510  7.534

810  

0.2000000000  1.5084976471  1.829
710  2.797

810  7.689
610  1.829

710  

0.3000000000  1.8957651229  3.578
710  5.213

710  7.134
510  3.581

710  

0.4000000000  2.4649627567  6.869
710  3.631

610  2.826
410  6.869

710  

0.5000000000  3.4080223442  1.997
410  2.598

510  8.502
410  1.997

410  

0.6000000000  5.3318552235  3.815
610  2.914

410  2.766
310  3.815

610  

0.7000000000  11.681373800  1.981
510  1.336

210  1.537
210  1.981

510  

0.7500000000  28.238252850  1.207
410  5.436

110  8.548
210  1.207

410  

0.8000000000  -68.479668346 7.416
410  1.3922

310  1.069
110  7.416

410  

0.8500000000  -15.457896136 3.961
510  1.4000

2610  8.964
310  3.961

510  

0.9000000000  -8.6876295465 1.316
510  2.6934

39410  5.730
310  1.316

510  

0.9500000000  -6.0202997164 6.672
610  9.5255

628610  3.935
310  6.672

610  

1.0000000000  -4.5880378250 
4.109

610  5.7049
10056710  2.9260

310  4.109
610  
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Fig 1. Graph of Comparison of Methods for Example 1  

 
 Fig 2. Graph of Comparison of Methods for Example 2  

 

Computational Details 

The computational experiments was implemented via MATLAB 8.0 version on a personal 

computer with the following specifications.   

  • System name- Acer Aspire E15  

  • Processor- Intel(R) Pentium(R) CPU N3530 @ 2.16GHz  

  • Installed memory (RAM)- 4.00GB  

  • System Type- 64-bits Operating System, x64-based processor  

  • Operating system- 3.9 Windows Experience Index. 

Thus, the CPU time for computing solution for different methods is given as:  
 

Table 3. CPU time for computing solution for different methods, in seconds 
Example h  RK4  Lambert (1965)  Niekerk(1988)   Garwoodet al. (2016)  NBRAM 

1 0.1000  0.7031  0.6719  0.7031  NA   0.5625 

2 0.05000 0.7101  0.5156  NA  0.5287   0.4531 

The numerical results in Tables 1, 2 and 3 dearly demonstrate the power of rational 

approximations in dealing with a function which has singular points within the range of 

definition. Since the theory of ordinary nonlinear differential equations offers no clue as to 

the singularities of the solutions of such equations, the detection of singularities must be 

accomplished heuristically. For Example 2, we consider a singular example which has 

singular point at 0.7854/4= x , It was observed that at the interval of discountinuity 

,1][ , RK4 fails while NBRAM outperforms the method of Garwood et al. (2016) within 

the region of definition. Computational experience, while observing the Tables of Errors and 

the CPU time, shows that the new method perform favourably for both non-singular and 

singular when compared with with existing methods of IVPs in ODEs. 
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