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Abstract 
In this study, the discrimination and classification problems associated with the persistent non-normal 

distribution have been studied. Sampling from non-normal distribution is assessed through the 

distribution of errors of misclassification in respect of Edgeworth Series Distribution (ESD). The 

effects of applying a normal distribution (ND) classificatory rule when the distribution is ESD by 

empirical approach is examined by comparing the errors of misclassification for ESD with ND using 

small sample sizes at every level of skewness factor. The expected probability of misclassification for 

ESD was generated through the characteristic function and conditional expectation approach. The 

asymptotic distribution of the error of misclassification for ESD was also derived through Taylor’s 

expansion which was used to determine the approximate mean and variance for ESD. 

Keywords: Errors of Misclassification, Edgeworth Series Distribution, Skewness Factor, 

Classificatory Rule, Optimum Probability of Misclassification 

1.   Introduction 

1.1. Background of the Study 

The study of discrimination and classification problems with a view to assessing the effects 

of departure from the usual assumptions of normality cannot be overemphasized. In 

discrimination, we are concerned with the existence of two or more groups and a sample of 

observations from each of the groups. We are therefore required to design a rule based on 

measurements from these observations to the correct population when we do not know from 

which of the two populations it emanates ( Alvin, 2002; William and Mathew, 1984). 

Classification is concerned with prediction or allocation of observations into groups 

in which a sample of observations is also given. The problem is to classify the observations 

into groups which are as distinct as possible (Ogum, 2002).  

Classification problem occurs when a researcher makes a number of measurements 

on an observation and wishes to classify the observation into one of several groups on the 

basis of the measurements. The observation cannot be identified with a group directly 

without recourse to the measurements. Fisher (1936), illustrating this concept, classified iris 

flower from unknown group (specie) to any of the three known species (Iris Setosa red, Iris 

Versicolour green, and Iris Virginica black) on the basis of their attributes (Sepal length in 

cm, Sepal width in cm, Petal length in cm and Petal width in cm). 

The general procedure for classifying an observation, with p observed characters 

consists of determining a function of approximately, and assigning 

to one of two populations depending on the value of the discriminant function (Anderson, 

2003).  Since the observation vector is random and the parameters for determining this 
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function are often unknown, the procedure could result into two types of errors defined by 

errors of misclassification. Errors of misclassification occur when there is selection of 

criteria that is not suitable for classification (John, 2010). 

The observation  may be classified as belonging to population  when it actually comes 

from population two  or vice versa. These errors are of serious concern in the choice of 

the procedure and as such, one is required to reduce the errors or more appropriately their 

probabilities are made as small as possible.  

Let  and  be the probability density functions associated with  for population 

 and population  respectively. If the prior probabilities for populations  and  are 

 and  respectively with the regions of classifying observations into into , 

then the probabilities of correctly or incorrectly classifying observations are: 

(1) Pr (object is correctly classified into ) 

=  

(2) Pr (object is misclassified into ) 

=  

(3) Pr (object is correctly classified into ) 

 

(4) Pr (object is misclassified into ) 

= 

 

 

 

 

 

 
 

 

Figure 1.  Probabilities of Misclassification   

In constructing a classification procedure, it is needful to minimize on the average, the bad 

effects of misclassification since a good classification procedure results to few 

misclassifications (Richard and Dean, 1988).  

X 1

2

1( )f x 2 ( )f x X

1 2 1 2

1P 2P i ( 1,2)iR i 

1

     
1

1 1 1 1 1 1Pr | Pr Pr 1|1 ( )
R

X R P P f x dx    

1

     
1

1 2 2 2 2 2Pr | Pr Pr 1| 2 ( )
R

X R P P f x dx    

2

     
2

2 2 2 2 2 2Pr | Pr Pr 2 | 2 ( )
R

X R P P f x dx     

2

     
2

2 1 1 1 1 1Pr | Pr Pr 2 |1 ( )
R

X R P P f x dx    

2

1 1(2 |1) ( )
R

P P f x d 

(1) 

(2) 

(3) 

(4) 

  
Classify X to Classify X to 

 

 



176 
 

The Linear Discriminant Function (LDF) is a statistical procedure constructed as 

 It assigns p dimensional observation vector  into one of the two 

populations  (i = 1,2) and it  is employed as an assignment rule when: 

(a) The density functions of observations from populations and  are multivariate 

normal:  

(b) The variance-covariance matrix  in  population  is the same as  in population ; 

(c) The prior probabilities of observations coming from populations and  are known; 

(d) The parameters of the density functions in (a) are known. 

Suppose the assumptions specified above are satisfied, then the Linear Discriminant 

Functions (LDF) provides optimal assignment rule in that it cannot be improved upon and 

the errors of misclassification are minimized. However, when some or all the assumptions 

are violated, it would be of interest to researchers to determine the effects of the violation on 

the procedures using LDF. If the parameters in (a) above are estimated from the samples, two 

problems may arise from the estimation stage. We may have missing values in the data and 

the initial sample may not be properly assigned due to inaccuracy in the initial assignment. 

1.2. Statements of the Problem 
For an experimenter who does not recognize an observation to be non-normal, he 

proceeds to use the normal regions for classification. The question that emanates is: “how does 

this failure to transform to normality, prior to classification, affect the probability of 

misclassification”? This problem was investigated by comparing the errors of misclassification 

associated with Johnson’s system distributions in the appropriate transformable non-normal case 

with that of normal distribution (Chingada and Kocherlakota, 1978).  

Considerable work has been done by researchers in connection with errors of 

misclassification when the underlying distribution is transformable non-normal distribution, 

but the errors of misclassification associated with persistent non-normal distribution remain 

unresolved (Kocherlakota et al., 1987). 

   For any classification rule, the associated error rates are often used as criteria for 

evaluation of classification performance. These error rates are easily calculated when 

population parameters are known. However, when these parameters are unknown and must 

be estimated from the samples, the exact overall expected rate for the Fisher’s Linear 

Discriminant Function becomes virtually intractable. There is also a loss of information 

which affects the estimation of the probabilities of misclassification, in that it may be 

underestimated or overestimated. In order to rectify this problem, we derive the asymptotic 

distribution for the expected probability of misclassification of the distribution under 

consideration (Peter, 1997) 

The aim of this study is to investigate the effects of sampling from non-normal 

population with a view to assess the effects of departure from usual assumptions of normality 

using ESD. The research work seeks to achieve the following objectives: 

(i) To examine the effect of applying the normal classificatory rule when the 

distribution is ESD by comparing the errors of misclassification using the Normal 

Distribution (ND) and ESD classification rules. 
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(ii) To use simulated data to validate the established results of the study. 
 

2.  Literature Review 

The problem of estimating probabilities of misclassification has received remarkable 

attention in the literature ever since Fisher (1936) introduced the Linear Discriminant 

Function. An extensive bibliography on this subject has been published by Toussaint (1974) 

since the probabilities of misclassification provide a way of evaluating the performance of 

the classification procedure. Several investigations have also been conducted on the effects 

of non-normality on classification rules: 

Lachenbruch et al. (1973) studied the robustness of the LDF and QDF with respect 

to certain types of non normality by considering Johnson’s system of distributions which are 

transformable to normality. They considered three members of the family: log normal 

transformation ,Logit normal transformation  and Inverse 

hyperbolic sine normal transformation  . Sampling studies were 

conducted in order to examine the behavior of the errors of misclassification, and they found 

out that the total error of misclassification is greatly increased as individual errors are 

distorted for all transformations in the case of the LDF. Approximate minimax rules were 

investigated because of the distortion in the errors and are found to reduce the errors of 

misclassification greatly. 

The effect of non-normality on the QDF was investigated by Lachenbruch et al. 

(1977). They assumed that the data were transformable to normality. They derived random 

samples from non-normal distributions in order to study the effect of non-normality on QDF. 

Their results indicated that the actual error rates were considerably larger than the optimal 

rates in the case of zero mean difference. 

The robustness of the Linear Discriminant Function (LDF) to non-normality using 

three Johnson system’s of distributions was examined by Lachenbruch et al. (1977). Though 

their work was restricted to transformable normality only, they opined that further work be 

carried out on a distribution that is non-normal with robustness on small sample sizes. 

The effect of applying normal classificatory rule with focus on non-normality was 

also examined by Kocherlakota et al. (1977). He also obtained the asymptotic distribution of 

errors of misclassification in the non -normal case using Johnson’s system of distribution. 

The distribution function  and the expected value of the conditional distribution 

were evaluated for various values of given parameters theoretically using Johnson system of 

distributions. It was observed that the presence of outliers in one sample does not affect the 

behavior of the error rates in general. 

Errors of misclassification for classification problems with two classes of 

univariategamma distribution were studied by Mahmoud and Moustafa (1995).The gamma 

density functions given as  
 

were reparameterized to the form 
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with  and V .   

The effects of applying the normal classificatory rule to non-normal transformable gamma 

distribution were studied and assessed by comparing probabilities of misclassification 

(optimum and conditional). This was based on the Linear Discriminant Function (LDF) for 

normality and the likelihood ratio rule (LR) for gamma populations for various combination 

of and .They concluded that for small values of , n1 and n2 ,the distribution 

functions do not become large and fast enough. This indicates that with a high probability, 

the errors of misclassification are likely to be large.  

In this study, we examine the persistent non-transformable, non-normal distribution by 

investigating the effects of applying the normal classificatory rule when the distribution is 

ESD using empirical approach. We also develop expected probability of misclassification for 

ESD and its asymptotic distribution. 
 

3. Method 

The effects of non-normality in a two population discriminatory problem on the errors of 

misclassification are examined when the Anderson’s statistic (W) defined by means of 

Edgeworth Series Distribution (ESD) is used for classifying an observation as emanating 

from population  or The effects would be studied for varying values of skewness 

factor based on the boundary of unimodal region for Edgeworth Series Distribution.  

Optimum probabilities of misclassification for ESD are computed from known parameters 

and subsequently, the apparent probabilities of misclassification in respect of ESD for known 

and estimated parameters are generated. 
 

3.1.   Edgeworth Series Distribution (ESD) 

Edgeworth Series Distribution (ESD) constitutes an expansion which is a series that 

approximates a probability distribution in terms of its cumulants and the Hermite 

polynomials. It relates the probability density function to that of a standard normal 

distribution (Ruby, 2010). 

The use of   ESD is expedient because approximations to distribution of sample statistics of 

higher order than  is of concern interest in asymptotic theory of statistics. An important 

tool that evaluates the refinements is provided for by ESD. Its expansions take cognizance of 

a method of using information about a higher order moment to increase approximations 

accuracy (Peter, 2010). 

Let F(x) be the distribution to be approximated,  its cumulants,  the cumulants of a 

standard normal distribution function and D the differential operator with respect to x. Also, 

let  and  be the standard normal distribution and standard normal density function 

respectively. Then 
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F(x) = exp  

 This is identical with the expansions in Hermite orthogonal function for a probability density 

function 

 

where are Hermite polynomials and 

 
By considering the standardized sum of n independent and identically distributed random 

variables, Edgeworth Series is obtained by collecting terms in equation (7) according to the 

power of n (Kendall and Stuart, 1958). 

Let  be independent and identically distributed random variables with mean  

and finite variance . If    is constructed from a sample of size n and  is 

asymptotically and normally distributed, then Edgeworth Series expansions are developed as 

approximations to distribution of estimates  of unknown quantities
.
 Thus the 

distribution functions of   is expanded as a power series in  so that  

 

where =  is the standard normal density function  and 

=  is the standard normal distribution function 

Equation (7) is the Edgeworth Series expansion. The functions  are polynomials with 

coefficients depending on cumulants of . In particular,   is a polynomial of degree 

at 3j -1. 

Suppose  denote two independent random samples from 

populations respectively. The observations emanate from the common 

distribution defined by the density function 

 

The parameter  satisfies the conditions:  and 

, where D denotes the differential operator
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and  is the skewness factor (Bhuyan, 2010). 

3.2. Proposed Method of Estimating Probabilities of  Misclassification 

Let  be independent samples of sizes  from populations π1,π2. 

To estimate the apparent probabilities of misclassification, we define   

where if  is classified as belonging to π2 and   if  is classified as 

belonging to π1, . 

The sample  is taken from  and each observation is classified in accordance 

with the rules in equations (35) and (36). 

Similarly, 

 

where if  is classified as belonging to π1 and   if  is classified as 

belonging to π2,  

The sample  is taken from  and each observation is classified in accordance 

with the rules in equations (35) and (36). 

.The notation E12E and E21E represent the apparent probabilities of misclassification when 

observations from populations  are misclassified respectively by ESD rule.  

For the purpose of comparison, the classification rule in equation (37) is successively applied 

to The proportion misclassified is estimated by the same procedure. Thus,  

 

represent the two errors of misclassification.  

3.3.  Classification Rules for Normal Distribution  

Let the probability density function of X in  be 
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If is the mean of the observation X and , then the likelihood when  

 

Equation (19) is the Anderson’s discriminant function (W) when the distributions in the two 

populations are univariate normal with the same variance but different means (Sedransk and 

Okamato, 1971). We reject H0 if L< K, where K is a constant. 

From Equation (19) and the decision rule made, the classification rule specifies as follows: 

   

Equation (20) reduces to 

  

Similarly, when  the classification rule becomes    

 

When the parameters  are unknown, and estimated by  from the sample  

sizes of respectively, the classification rule becomes: 

 

3.4.   Classification Rule for Edgeworth Series Distribution  (ESD) 

Let the pdf of X in be 
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When , the likelihood ratio becomes 

 

Equation (26) becomes 

 

 

We reject H0 by if  

ln L < K 

Taking K =1 reduces equation (30) to ln L< 0  

Thus, we reject  

 

From equation (30), the classification rule takes the form: 
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When the parameters are unknown, they are estimated by respectively and 

plugged in equation (34) before classification begins. 

In  the  process of comparing errors of misclassification using ESD and ND classification 

rules, and data generated from the ESD, the effect of applying normal classification 

rule(likelihood ratio) when the distribution is ESD  would be investigated by empirical 

method. Thus, the classification rule for ESD is given in the form: 

 where P and Q remain as earlier defined in equations (35) and (36) 

The normal classificatory rule for   is  

 
 

3.5.  Comparison of Errors of Misclassification 
We estimate the errors of misclassification with focus on the small sample sizes. This is based on 

the fact that the asymptotic expansion of the errors does not indicate the behaviour of the error for 

small sample sizes (Broffit and William, 1973; Geisser, 1967). 

Estimation of the optimum probability of misclassification in the ESD when the skewness factor 

is in the range (0.0025, 0.4) is considered.  

The apparent error rate for the Normal Distribution and ESD classification rules are 

examined using simulated data from ESD. The classification rules for the two distributions are 

also derived using likelihood criterion. The form of the estimators and the choice of values for 

skewness factor are also presented. The errors of misclassification are subsequently compared 

using the likelihood ratio rules for the Normal Distribution and ESD.  
 

3.6. Choice of Skewness Factor Values 

The choice of the values for skewness factor ( ) is anchored on the boundary of the 

positive unimodal regions for ESD where its probability density function is only valid. Thus, 

the skewness factor is chosen to lie within the range  as suggested by Barton 

& Dennis (1952) and Drapper & Tierny (1972). 
 

3.7. Optimum Probability of Misclassification of ESD 
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misclassification is optimal in the sense that we cannot improve upon it. When an 

observation from is misclassified, the optimum probability of misclassification is given by 

 

where and is Chebyshev’s-Hermite polynomial of degree r and 

defined by the identity: 

 

 

See Kendall and Stuart (1958). 

If  denotes the standard normal density function, then we define the Hermite polynomial 

 for any integer n by 

 

and setting as in equation (38), we have 
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Using the result in equation (38) and setting , we have 

 

4.  Results 
The optimum probabilities of misclassification are generated from equations (41) and (42). We 

assume that the known parameters: and .  This implies that equations (41) 

and (42) are now functions of the skewness factor  in the range . The 

probabilities of misclassification  are also computed and the results displayed in 

Table 1. 

The apparent probabilities of misclassification are also examined when are known 

and when the parameters are estimated from the samples. 

Two independent samples of configuration size of 1000 each are at each value of the skewness 

factor from populations π1 and π2. Their distributions are of ESD with respective parameters 

and. 

Using the ESD and Normal Distribution (ND) classification rules, the proportions misclassified 

in populations  are obtained and repeated for small samples (n = 5, 10, 15, 20 and 25).  

The probabilities of misclassification obtained from the samples are averaged and the results 

displayed in Tables 2-7. 

The notation  is the apparent probability of misclassification when an observation from  

is misclassified by ESD and  is the apparent probability of misclassification when an 

observation from  is misclassified by ESD. Similarly,  are apparent 

probabilities of misclassification when observation from populations  and  are 

misclassified respectively by ND classification rule. 

The simulation experiments have been implemented using R programs and all the simulation 

results are obtained and displayed along with the total probabilities of misclassification in Tables 

1-7. 
 

Table1. Optimum Probabilities of Misclassification at Different Values of Skewness for ESD  

 

Optimum Probability of Misclassification 

Skewness Factor (λ3) E12E E21E Total 

0.00625 0.3082 0.3088 0.6170 
0.0125 0.3079 0.3091 0.6170 

0.025 0.3074 0.3096 0.6170 

0.05 0.3063 0.3107 0.6170 

0.10 0.3041 0.3129 0.6170 

0.15 0.3019 0.3151 0.6170 
0.20 0.2997 0.3173 0.6170 
0.25 0.2975 0.3195 0.6170 
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0.30 0.2953 0.3217 0.6170 
0.35 0.2931 0.3239 0.6170 
0.40 0.2909 0.3261 0.6170 

 

The results in Table 1.show that decreases as the skewness factor  increases and 

 increases as  increases. The total probability of misclassification is also stable 

(constant) as  increases. 

Table  2. Comparison of Errors of Misclassification for All known Parameters  

Averaged over 5 Samples. 

 

 

ESD ND 

Skewness Factor(λ3) E12E E21E Total E12N E21N Total 

0.00625 0.329 0.303 0.632 0.327 0.303 0.630 

0.0125 0.321 0.321 0.642 0.318 0.322 0.640 
0.025 0.282 0.326 0.608 0.278 0.330 0.608 
0.05 0.312 0.289 0.601 0.308 0.296 0.604 
0.10 0.328 0.296 0.624 0.315 0.307 0.622 
0.15 0.355 0.298 0.653 0.330 0.324 0.654 
0.20 0.328 0.305 0.633 0.287 0.331 0.618 
0.25 0.339 0.262 0.601 0.298 0.296 0.594 
0.30 0.377 0.248 0.625 0.320 0.304 0.624 
0.35 0.387 0.255 0.642 0.328 0.310 0.638 
0.40 0.396 0.247 0.643 0.297 0.301 0.598 

 

From Table 2,  is greater than  at every level of  and  is either equal to or less than 

 at every level of . The equality of the probability occurs when  is very small. 

Table 3.  Comparison of Errors of Misclassification for Means unknown and Estimated 

by Average Values over 5 Samples.  

 

ESD ND 

Skewness Factor   (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.140 0.400 0.540 0.140 0.400 0.540 
0.0125 0.220 0.410 0.630 0.220 0.410 0.630 
0.025 0.225 0.465 0.690 0.220 0.475 0.695 
0.05 0.210 0.395 0.605 0.205 0.400 0.605 

0.10 0.205 0.475 0.680 0.175 0.495 0.670 

0.15 0.260 0.285 0.545 0.230 0.320 0.550 
0.20 0.305 0.365 0.670 0.295 0.395 0.690 
0.25 0.455 0.185 0.640 0.420 0.230 0.650 
0.30 0.195 0.465 0.660 0.115 0.545 0.660 
0.35 0.225 0.465 0.660 0.125 0.520 0.645 
0.40 0.440 0.180 0.610 0.360 0.250 0.610 

 From Table 3, E12E is either equal to or greater than E12N and E21E is either equal to or less     

 than or greater than E21N at every level of skewness factor. The equality of the probability   

 also occurs when the skewness factor λ3is very small. 

  Table 4. Comparison of Errors of Misclassification for Means unknown and  

   Estimated by Average Values over 10 Samples. 

 

ESD 

 

ND  

Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.252 0.249 0.501 0.252 0.315 0.567 

0.0125 0.236 0.236 0.472 0.236 0.236 0.472 
0.025 0.266 0.219 0.485 0.231 0.295 0.526 

12EE 3

21EE 3

3

12EE 12NE 3 21EE

21NE 3 3
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0.05 0.224 0.282 0.506 0.216 0.314 0.530 
0.10 0.290 0.278 0.568 0.208 0.336 0.544 

0.15 0.387 0.203 0.590 0.215 0.220 0.435 
0.20 0.277 0.320 0.597 0.270 0.337 0.607 
0.25 0.255 0.245 0.500 0.230 0.292 0.522 

0.30 0.248 0.334 0.582 0.182 0.394 0.576 
0.35 0.216 0.339 0.555 0.175 0.354 0.529 

0.40 0.253 0.209 0.462 0.170 0.196 0.366 

   From Table 4, E12E is either equal to or greater than E21N and E21E is also equal to or less      

   than E21N at every level of skewnessλ3. 
 

Table 5. Comparison of Errors of Misclassification for Means unknown and Estimated 

by     Average Values over 15 Samples. 

 
Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.345 0.145 0.490 0.345 0.150 0.495 

0.0125 0.310 0.310 0.620 0.310 0.310 0.620 
0.025 0.405 0.280 0.685 0.400 0.285 0.685 

0.05 0.230 0.390 0.620 0.225 0.395 0.620 
0.10 0.375 0.305 0.680 0.350 0.315 0.665 
0.15 0.405 0.180 0.585 0.360 0.225 0.585 
0.20 0.355 0.325 0.680 0.320 0.355 0.675 
0.25 0.295 0.340 0.635 0.235 0.395 0.630 

0.30 0.320 0.350 0.670 0.230 0.385 0.615 
0.35 0.260 0.345 0.605 0.200 0.430 0.630 
0.40 0.315 0.375 0.690 0.145 0.415 0.560 

          From Table 5, E12E is equal to or greater than E21N and E21E is either less  

          or  greater than or equal to E21N at every level of skewness factor λ3. 
 

     Table 6. Comparison of Errors of Misclassification for Means unknown and                

     Estimated by Average Values over 20 Samples . 
Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.220 0.206 0.426 0.220 0.206 0.426 

0.0125 0.280 0.280 0.560 0.192 0.295 0.487 
0.025 0.330 0.210 0.540 0.290 0.230 0.520 
0.05 0.345 0.205 0.550 0.295 0.250 0.545 
0.10 0.265 0.300 0.565 0.230 0.390 0.620 
0.15 0.340 0.350 0.690 0.330 0.375 0.705 
0.20 0.350 0.240 0.590 0.320 0.255 0.575 
0.25 0.295 0.270 0.565 0.270 0.295 0.565 

0.30 0.300 0.195 0.495 0.265 0.200 0.465 
0.35 0.310 0.350 0.660 0.270 0.360 0.630 

0.40 0.405 0.285 0.690 0.380 0.400 0.780 
 

 From Table 6, E12E is either equal to or greater than E12N and E21E is either equal  

to or less than E21Nat every level of skewnessλ3. 

 
 Table 7. Comparison of Errors of Misclassification for Means unknown and Estimated by   

average Values over 25 Samples. 

Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.270 0.220 0.490 0.270 0.220 0.490 
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0.0125 0.290 0.330 0.620 0.290 0.235 0.525 

0.025 0.390 0.295 0.685 0.375 0.310 0.685 
0.05 0.340 0.270 0.610 0.335 0.280 0.615 
0.10 0.375 0.305 0.680 0.360 0.315 0.675 

0.15 0.360 0.230 0.590 0.345 0.245 0.590 

0.20 0.275 0.430 0.705 0.225 0.480 0.705 

0.25 0.375 0.255 0.630 0.320 0.290 0.610 

0.30 0.390 0.240 0.630 0.300 0.330 0.630 

0.35 0.290 0.300 0.590 0.240 0.345 0.585 
0.40 0.405 0.225 0.630 0.305 0.290 0.595 

From Table 7, E12E is equal to or greater than E12N and E21E is either equal to or greater than 

E21N at every level of skewness  λ3. 
 

5.  Discussion 
From the simulation results, It is evident that the total probability of misclassification at every 

value of is either under or overestimated when small samples are employed to estimate

. The differences between taking small sample sizes are also not apparent.  

The fact that and at every level of skewness factor needed some 

algebraic justification and that has been established in this study. The actual probabilities of 

misclassification E12E and E21E as well as their sum remain close to the corresponding errors 

induced by the normal rule when is small. As  increases, E12E tends to be larger than E12N 

and E21E is smaller than E21N. 

Also, from Tables 4-7, the total probabilities of misclassification for the ESD and ND 

classification rules indicate no major difference between them at each value of . The 

behaviours of the individual probabilities of misclassification  at every level of 

 show that for small sample sizes, and . The observed equality 

occurs when  is very small with an increasing parity as  increases. The observed equality 

of probabilities requires some algebraic justification. 

From Normal Distribution (ND) classification rule and ESD classification rule, we earlier 

specified that   

When and we have, 

 

We consider the error of misclassifying an observation .  By normal classification 

rule, we classify an observation  wrongly if we use the rule: 
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Classify if . 

The corresponding wrong classification of an observation using ESD classification 

rule is to use 

Classify  if  

From equation (49),  is a function of random variable X and the skewness factor 

.
Given that , the two procedures are equivalent. 

 

But then 

 

The quadratic function in equation (51) is equal to zero if the solutions of (51) are  

 

 

The parabola of equation (52) faces upwards and indicates that when

 

 

With this, the cut-off point of the ESD classification rule is higher than the ND classification 

cut-off point. This results to  being greater than .  

Also, if an observation from  is wrongly classified, the cut-off point of the ESD 

classification rule is lower than the ND classification rule cut-off point.                    

 Hence, 
. 

6.  Conclusion 

We have investigated the effect of sampling from persistent non-normal distribution by 

examining the normal classificatory rule when it is actually an Edge worth Series 

Distribution (ESD). From the results obtained in this study, it is asserted that the normal 

procedure is sturdy against departures from normality. Thus, the skewness factor  has a 

very little effect on the total probability of misclassification, which implies that it is not 

affected by the departures from normality. Nevertheless, the skewness factor indicates an 

increase or decrease in their errors of misclassification. Besides, the estimation of the errors 
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when small sample sizes are used to estimate the means is an indication that the optimum 

probability of misclassification is underestimated or overestimated. This is anchored on the 

data generated and strictly restricted to this work. 
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