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Abstract 
The bivariate kernel estimator bridges the gap between the univariate kernel and higher dimensional 

kernels in density estimation. The efficiencies of the univariate kernels have received considerable 

attention unlike their bivariate counterparts due to the “curse of dimensionality” effect. In this paper, 

our focus is on the efficiencies of the derivatives of the bivariate kernels of the Uniform, 

Epanechnikov, Biweight, Triweight, Quadriweight and Gaussian kernels which are members of the 

beta polynomial family. The bivariate form of these kernel functions were obtain from their univariate 

counterpart using the product approach. The results obtain shows that the efficiency of the kernels 

decrease as the powers of the polynomial increases and tends to increase as the derivative order 

increases.  
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1. Introduction. 

Density estimation is a fundamental data analysis technique in statistics and probability 

theory. Kernel density estimation is a nonparametric estimation technique with wider 

applications due to the simplicity of its implementation (Schauer et al., 2013). As a 

nonparametric estimator, it is mainly for data exploration and visualization purposes but its 

application has been extended to the machine learning community. In Härdle et al. (2004), 

nonparametric estimation is viewed as the building blocks for different semiparametric 

estimators where the separability ideology of the independent variables in semiparametric 

model is in line with the devolution of decision making process in organizations or stages of 

production in industries in real life situation. Kernel density estimation can also be applied 

indirectly to other areas of nonparametric estimation such as discriminant analysis, goodness-

of-fit testing, hazard rate estimation, bump-hunting, intensity function estimation, and 

classification with regression estimation. These other areas where kernel density estimation 

can be applied are contained in Raykar et al. (2015). 

Kernel derivatives are of significant applications such as locating the local extrema and 

identification of the point of inflexion of a distribution. Chacon and Duong (2013) 

investigated the statistical properties of some distributions with kernel density derivative 

such as location of point of inflexion while in time series analysis, Rondonotti et al. (2007) 

applied kernel density derivative with related data and the results obtained was outstanding. 

The estimation of the optimal smoothing parameter in kernel density estimation requires the 

derivative of the unknown probability function and Silverman (1986) suggested that a certain 

value should be used in the case of the normal kernel. Other data analysis where kernel 

density derivative can be used include human growth data analysis (Ramsay and Silverman, 

2002), investigation of nanoparticles property of data (Charnigo and Srinivasan, 2011) and 

chemical compositions inferences (De Brabanter et al., 2011). Finally, in parameter 
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estimation and hypothesis testing, density derivatives has played a significant role, therefore 

proper estimation of the density derivatives is very important (Sasaki et al., 2015). 

The limitation of the kernel density estimator is the difficulty of selecting the accurate 

smoothing parameter. In univariate kernel estimation, the problem of smoothing parameter 

selection is with less complexity compare with the multivariate setting where there are 

different forms of smoothing parameterizations. The choice of smoothing parameter is also 

very important in kernel density derivatives particularly as the order of the derivative to be 

estimated increases. In Siloko et al. (2018), two gradient methods of selecting smoothing 

parameter in the bivariate kernel density estimation were proposed and the results 

outperformed the popular cross validation selectors.  
 

2. The Kernel Density Derivatives. 

The kernel estimator is a nonparametric density estimator and is a vital tool in statistical data 

analysis. The univariate kernel estimator is of the form 

 ̂( )  
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where   is the kernel function,      is the smoothing parameter and   is the sample size. 

In most cases particularly in scientific computing and data intensive applications, the data set 

    are observations or measurements obtained from real life. The kernel function is a non-

negative function that satisfies the conditions 

{
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The first condition in Equation (2) means that any weighting function must integrate to unity, 

hence most kernel functions are probability density functions; the second condition simply 

states that the average of the kernel is zero, while third condition means that the variance of 

the kernel is not zero (Scott 1992).  

The bivariate kernel density estimator occupies a unique position of bridging the univariate 

kernel density estimator and other higher dimensional kernel estimators. The usefulness of 

the bivariate kernel density estimator is mainly in its simplicity of presentation of probability 

density estimates, either as surface plots or contour plots and serving as the bedrock for 

understanding other higher dimensional kernel estimators. In bivariate kernel density 

estimation,      is taken to be the two random variables with a joint probability density 

function  (    ). The random variables                   are the set of observations and 

  is the sample size. The bivariate kernel density estimate of  (    ) is of the form 
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where      and      are the smoothing parameters in the   and   axes and  (    ) is a 

bivariate kernel function. The bivariate kernel density estimator in Equation (3) can also be 

written as the product of two univariate kernel as 
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The asymptotic mean integrated squared error is the commonest optimality criterion function 

used in measuring the performance of smoothing parameter in kernel estimation. Applying 

Taylor’s series expansion in Equation (1) will yield the asymptotic mean integrated squared 

error (AMISE) which is made up of the asymptotic integrated variance and the asymptotic 

integrated squared bias given by 
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where  ( ) is the roughness of the kernel,   ( )
 
 
 is the second moment of the kernel 

and  (   )   ∫    ( )
    is the roughness of the unknown probability density function 

(Scott, 1992; Guidoum, 2015). Similarly, the asymptotic mean integrated squared error of the 

bivariate kernel estimator is of the form 
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where  ( )  is the roughness of the kernel,   ( )
 
 
 is the second moment of the kernel 

and  (   )  ∫   (   )
          (   )  ∫   (   )

      are the roughnesses of the 

unknown probability density function. 

The derivative of the univariate kernel estimator is obtained by taking the derivative of the 

kernel density estimator in Equation (1). If the kernel   is sufficiently differentiable   times, 

then, the     density derivative of Equation (1) is given by 
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where  ( ) is the     derivative of the kernel function and   is a symmetric probability 

density  (Scott, 1992). In order for the estimator in Equation (7) to exist,  ( ) must exist and 

not equal to zero. Again the     density derivative of Equation (4) is given by  
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The AMISE of the     derivative of the bivariate kernel function provided the kernel   can 

be sufficiently differentiated is of the form 
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where  ( ( ))
 

 is the roughness of the     derivative of the kernel,   ( )
 
 
 is the second 

moment of the kernel function and   (     )  (     )  are the     roughnesses of the 

unknown probability density function. 
 

3. The Beta Polynomial Kernels and Efficiency of Density Derivatives. 

The general beta polynomial kernel family for     with *  ,    -+ is of the form 

  ( )  
(    ) 

      
(    )                                                                                                      (  ) 

where             and the double factorial (    )  (    )(    )      . 

As the value of   increases from 0 to 3, we have the Uniform, Epanechnikov, Biweight and 
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Triweight kernels which are members of the family (Scott, 1992; Hansen, 2005). The popular 

normal kernel is the limiting case that is when   tends to infinity and the Uniform kernel is the 

simplest kernel in this family of kernels while the Epanechnikov kernel is regarded as the optimal 

kernel with respect to an error criterion, the mean integrated squared error. It should be noted that 

the kernels with higher values of   and their estimates are smoother and also possess more 

derivatives. 
In kernel density estimation, there are two main techniques of obtaining the multivariate kernels 

from the univariate case. These two popular approaches are the product approach and the 

spherical approach (Wand and Jones, 1995). The product kernel estimator allows different 

smoothing parameter to be used for each dimension unlike the fixed kernel that uses a single 

smoothing parameter. The order of the smoothing parameter that minimizes the AMISE of the 

product kernel is same as that of the multivariate fixed kernel and the AMISE is also of the same 

order as that of the multivariate fixed kernel. The advantage of the multivariate product kernel 

over other forms is that the product approach is beneficial especially when the scales of the 

variables to be considered differ. Also, in the case of unimodal densities, the product kernel that 

permits different amount of smoothing for each dimension has been suggested by many authors 

(Sain, 2002). The product approach uses the product of the marginal univariate kernels and is of 

the form 

  
       ( )    ∏(    

 )   
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where    
(    ) 

     (  ) 
 is the normalization constant and   is the dimension of the kernel.  

The efficiency of a kernel function which is measured in comparison with the Epanechnikov 

kernel is of the form 
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where   ( )   ( )   ( )
  is a constant of any given kernel and  (  )   (  )

   (  )
  

is the constant of the Epanechnikov kernel (Silverman, 1986). The Epanechnikov kernel produce 

the smallest AMISE value in the case of the classical second order kernel and therefore, it is 

regarded as the optimal kernel with respect to the asymptotic mean integrated squared error. 

The efficiency of the kernel derivative also requires the determination of the optimal kernel for its 

computation. The Epanechnikov kernel cannot be the optimal kernel in kernel density derivatives 

because its second derivative is a constant meaning that it is not continuously differentiable. 

Therefore, the efficiency of the     derivative kernel is given by  
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is the optimal kernel for the     kernel 

derivative function and  (    
 )   (    

 ) (    )⁄   (    )
 
 
 is the constant of any given 

(   )   derivative kernel function. Further simplification of Equation (13) resulted in 

Equation (14) and is of the form  
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The optimal kernel for estimating the     derivative was shown by Muller (1984) which involves  

solving for the minimum of   (  ), subject to the conditions                          and  



222 
 

the solution obtained is   (   )   kernel from the beta polynomial kernels in Equation (10). 

This implies that when estimating the first derivative (   ), the optimal kernel is the Biweight 

kernel (   ) but if we desire to estimate the second derivative (   ), then the optimal kernel 

in this case is the Triweight kernel (   ), and the optimality of the kernel functions goes on in 

that manner. The computation of the efficiency of kernel density derivatives requires the 

derivative of the     roughness of the kernel function to be estimated while the second moment 

of the kernel is not affected irrespective of the derivative order to be estimated.    

In computing the efficiency of the kernel derivatives, two very important statistical quantities are 

the     roughness of the kernel functions and its second moment as observed in Equation (13) 

and Equation (14). The     roughness of a kernel function is given by 

   (  )  ∫  ( )                                                                                                                     (  ) 

Also, the second moment of a kernel function is of the form 

  ( )
  ∫   ( )                                                                                                                      (  ) 

In computing the statistical properties and efficiencies of the derivatives of the bivariate beta 

polynomial kernels, we shall specifically consider the Uniform, Epanechnikov, Biweight, 

Triweight, Quadriweight and Gaussian kernels. The quantities in Equation (15) and Equation 

(16) are the parameters of interest in the determination of the efficiency of any given kernel 

function in density estimation. 
 

4. Discussion of Results. 
We shall consider the statistical properties of   for which              which are the 

Uniform, Epanechnikov, Biweight, Triweight, Quadriweight kernels and also for     which is 

the Gaussian kernel for the bivariate case. The Epanechnikov, Biweight and Triweight are of 

wide applications because they form the basis when discussing this class of kernels especially the 

Epanechnikov kernel in the computation of the efficiencies of other kernel functions of this 

family.  

In Table 4.1 the statistical properties of the two dimensional product kernels of the beta 

polynomials kernels were computed. The bivariate kernel functions of the Uniform, 

Epanechnikov, Biweight, Triweight, Quadriweight and Gaussian kernels were obtain using the 

procedure in Equation (11). The efficiency of the bivariate Epanechnikov kernel is       and the 

efficiencies of other kernel functions of the beta family are less than       . As evident in Table 

4.1, the efficiencies decrease with increase in the values of    .  
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Table 4.1: Bivariate Kernel Functions with Roughnesses, Moments and 

Efficiencies. 
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Tables 4.2; 4.3 and 4.4 are the efficiencies of the first to the third derivatives of the bivariate 

kernels while Table 4.5 shows the efficiencies of all the order of the kernel derivatives 

considered. In all the cases, the efficiencies of the kernel functions decrease as the values of 

the powers of   increases but increases as the order of the derivative increases. However, the 

increase in efficiencies with respect to the derivative order starts decreasing immediately after 

the optimum value for each particular order. 
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Table 4.2: Bivariate Roughnesses, Moments and Efficiencies of the First Derivative. 
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Table 4.3: Bivariate Roughnesses, Moments and Efficiencies of the Second Derivative. 

𝐊𝐞𝐫𝐧𝐞𝐥 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬 𝑹(𝑲) 𝝁𝟐(𝑲) 𝑬𝒇𝒇(𝑲) 𝑬𝒇𝒇(𝑲)  
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Table 4.4: Bivariate Roughnesses, Moments and Efficiencies of the Third Derivative. 

Table 4.5: Bivariate Efficiencies of Second Order Kernels Derivative. 

𝐊𝐞𝐫𝐧𝐞𝐥 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬 
 

𝐃𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞 𝐎𝐫𝐝𝐞𝐫𝐬 (𝐫) 
 

S/N 0 1 2 3 

𝑲𝟎(𝒕)  0.864    

𝑲𝟏(𝒕) 1.000 0.868   

𝑲𝟐(𝒕) 0.988 1.000 0.836  

𝑲𝟑(𝒕) 0.974 0.975 1.000 0.815 

𝑲𝟒(𝒕) 0.963 0.946 0.967 1.000 
𝑲∅(𝒕) 0.905 0.785 0.875 0.892 
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5. Conclusion. 
This study investigates the efficiencies of the bivariate kernel density derivatives of the beta 

polynomial family for some powers of    and the limiting case. Of interest are the Uniform, 

Epanechnikov, Biweight, Triweight, Quadriweight kernels and the Gaussian kernel for the 

bivariate case. The results presented in Table 4.5 above shows that the efficiencies of the 

bivariate kernel functions decreases as the power of   increases. However, the efficiencies 

tend to increase as the derivative order of the bivariate kernels increases but starts decreasing 

immediately after the optimum kernel for each derivative order. This simply suggests that the 

estimates of the higher derivatives of the bivariate kernel function will be smoother than 

those with fewer derivatives. 
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