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Abstract 
This paper considers scale resolution models for iris pattern segmentations based on edge detections. 

Edges in images can be mathematically defined as local singularities. Until recently, the Fourier 

transform was the main mathematical tool for analysing singularities. However, the Fourier transform 

is global and as such not well adapted to local singularities and it is hard to find the location and 

spatial distribution of singularities with Fourier transforms. It shows how vibration could be further 

minimized in the improved Mixed Radix Algorithm, by deriving a numerical algorithm for noise 

minimization in signal processing systems for faster pattern recognition. It is also proved analytically 

that this derived algorithm for noise minimization converges.  

Keywords: Scale Resolution Model, Pattern Segmentation, Edge Detection, Singularities and Fourier 

Transform. 

1.0 Introduction 

A very common source of degradation in a digital image is noise contamination. Noise 

may be present in an image due to different reasons and its effect in degrading the image is 

different for different kinds of noise. The image corrupted with noise generally suffer from having 

low signal-to-noise ratio and may not be suitable for further processing without removing or 

reducing the effect of noise in it. For example, a biomedical image corrupted with noise cannot be 

used reliably for clinical diagnosis of disease. A satellite image corrupted with speckle noise fails 

to represent the remote-sensed data of, say, a geographical terrain. Hence removal of noise from the 

image is of utmost importance in image processing and analysis.  

However, removal of noise like every known noise cleaning algorithm is associated with 

partial removal of the desired signal component. For example, mean filters generally blur the 

edges and the comer points present in the image [1]. 

Signature recognition is defined as the process of verifying the writer’s identity by 

checking his/her signature against samples kept in a database. The result of this process is 

usually a number between 0 and 1 which represents a fit ratio (1 for match and 0 for 

mismatch) [2]. The threshold used for the confirmation/rejection decision depends on the 

nature of the application. The distinctive biometric patterns of this modality are the personal 

rhythm, acceleration and pressure flow when a person types a specific word or group of 

words (usually the hand signature of the individual). 

This paper is aimed applying scale resolution models that will enable us carry out Iris Pattern 

Segmentations based on edge detections. The general mathematical construct is: 
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Some of the methods and the results in edge detection are: 

2.0 Edge Detector Using Wavelets 
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Wavelet transforms provide a local analysis; they are especially suitable for time-frequency 

analysis [7] such as for singularity detection problems. With the growth of wavelet theory, 

the wavelet transforms have been found to be remarkable mathematical tools to analyse the 

singularities including the edges, and further, to detect them effectively. Mallat and Zhong 

[8] proved that the maxima of the wavelet transform modulus can detect the location of the 

irregular structures. The wavelet transform characterizes the local regularity of signals by 

decomposing them into elementary building blocks that are well localised both in space and 

frequency. This not only explains the underlying mechanism of classical edge detectors, but 

also indicates a way of constructing optimal edge detectors under specific working 

conditions. 

A remarkable property of the wavelet transform is its ability to characterize the local 

regularity of functions. For an image       , its edges correspond to singularities of       , 
and thus are related to the local maxima of the wavelet transform modulus. Therefore, the 

wavelet transform can be used as an effective method for edge detection. 

Assume        is a given image of size    .At each scale   with     and           
the wavelet transform decomposes       into three wavelet bands: a low-pass band    , a 

horizontal high-pass band   
   and a vertical high-pass band. 

   
   The three wavelet bands (      

     
   ) at scale j are of size    , which is the 

same as the original image, and all filters used at scale   (   ) are up sampled by a factor of 

  compared with those at scale zero. In addition, the smoothing function used in the 

construction of a wavelet reduces the effect of noise. Thus, the smoothing step and edge 

detection step are combined together to achieve the optimal result. The short coming of this 

method is that the smoothing wavelet to reduce Noise cannot effectively remove the noise 

and Occlusion of the eye and this makes it difficult to segment Iris. 
 

3.0 Filter Bank Gabor  

The processing of facial images by a Gabor filter has been widely used for its 

biological relevance and technical properties. The Gabor filter kernels have similar shapes as 

the receptive fields of simple cells in the primary visual cortex. They are Multiscale and 

multi-orientation kernels. The Gabor transformed face images yield features that display 

scale, locality and differentiation properties. These properties are quite robust to variability 

of face image formation, such as the variations of illumination, head rotation and facial 

expressions. 
 

4.0 Gabor Functions and Wavelets 

The two-di1mensional Gabor Wavelets function       and its Fourier transform 

       can be defined as follows: 
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Where    
 

 
     and    

 

 
    . Gabor functions can form a complete but non-

orthogonal basis set. Expanding a signal using this basis provides localised frequency 

description. A class of self-similar functions, referred to as Gabor wavelets in the following 

discussion, is now considered. Let        be the mother Gabor wavelet, then this self-
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similar filter dictionary can be obtained by appropriate dilations and rotations of        
through the generating function: 

                                                  (4) 
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 Where                                is the orientation (  is the number of 

orientations) and     is the scale factor. 
 

5.0 Gabor Filter Dictionary Design 

The non-orthogonality of the Gabor wavelets implies that there is redundant information in 

the filtered images, and the following strategy is used to reduce this redundancy. 

Let    and    denote the lower and upper centre frequencies of interest. 

Let K be the number of orientations and S be the number of scales in the Multiresolution 

decomposition. As proposed by [3] the design strategy is to ensure that the half-peak 

magnitude support of the filter responses in the frequency spectrum touch each other. This 

result in the following formulas for computing the filter parameters   and   (and thus 

  and   : 
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where                     To eliminate the sensitivity of the filter response to 

absolute intensity values, the real (even) components of the   Gabor filters are biased by 

adding a constant to make them zero mean. 
 

6.0 Augmented Gabor-Face Vector 

Given any image        its Gabor wavelet transformation is 

    ∫           
                                               (10) 

Where    indicates the complex conjugate of    . The Gabor wavelet transformation of 

the facial image is calculated at S scales   {        }and K different orientations, 

  {        }and let us set        and         
   denotes a Gabor wavelet transformation of a face image at the scale m and orientation n. 

shows a sample face image from the database and its forty filtered images (five scales:     

and eight orientations:    have been taken).The augmented Gabor-face vector can then be 

defined as follows: 

  (     
      )

 
                                 (11) 

Where t, is the transpose operator. The augmented Gabor-face vector can encompass all 

facial Gabor wavelet transformations, and has important discriminatory information that can 

be used in the classification step 
 

7.0 The Conjugate Gradient Algorithm  

The back propagation algorithm was the first and until recently the only algorithm to train  

feed forward multiplayer perceptrons. We here present the CGM variant.  
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Until recently, when the extended conjugate gradient method (ECGM) was formulated, the 

conjugate gradient method (CGM)  has been one of the most effective method among the 

iterative methods for solving linear system of equations (of the form in equation(11) as a 

minimization method. The CGM provides faster convergence for quadratic functional than 

gradient descent methods while avoiding computation of the inverse of the Hessain matrix.  
 

Materials and Methods 

Since R is a positive definite, real symmetric n x n matrix, then the quadratic functional  

      
 

 
                                            (12) 

Has a unique minimum point w* which is a solution of the system of equations Qx = b.  

Since            

Then we can write  

                                             (13) 

The minimization iteration updating method for (12) is given as  

                                                    (14) 

Where  

   
        

   

  
    

                                    (15) 

The value of the step size   that minimizes         can be found by setting  
  (            )

   
                                      (16) 

yielding 

   
               

               
                                                                                                     

With the step size    chosen as in equation (17), we have the following important result on 

the convergence rate of the gradient descent method.  

8.0 The Active Contour Model 

In active contour model, we use the technique of matching a deformable model to an image 

by means of energy minimization. An active contour model inhalized near the target refined 

iteratively and is attracted towards the salient contour. A snake in the image can be 

represented as a set of n points.  

                                                (18) 

Where                   

We can write the energy function as: 
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Where, Ein denote internal energy of the Spline (snakes) due to bending.  

Eimage denotes the image forces acting on Spline  

Econ denote external constraint force introduced by user  

The combination of Eimage and Econ can be represented as     that denotes the external energy 

acting on the Spline. 

V(s) vector representing the Spline 

Internal energy of the snake as given by [4] is 

               

Where      denotes the energy of the snake contour.  

    denotes the energy of the Spline curvature. 

By finite difference notation: 
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Where  (s) regulates internal energy of the Spline 

 β (s) regulates and develops the move curves of the Spline 

The first-order term makes the snake act like a membrane and second-order term makes it act 

like a thin plate. Large values of   (s) will increase the internal energy of the snake as it 

stretches more and more, whereas small value of   (s) will make the energy function 

insensitive to the amount of stretch. Similarly, large values of  (s) will increase the internal 

energy of the snake as it develops more curves, whereas small values of   (s) will make the 

energy function insensitive to curves in the snake. Smaller values of both   (s) and   (s) will 

place fewer constraints on the size and shape of the snake.  

According to Goswami [5], we introduce(    ) as the gradient of the image and we have  

     ∑ |          |
  |         |
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Where       is the gradient image of the Spline 

 We introduce the forward difference operator in order to move the gradient line to the region 

of interest. 
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and 

       
 

√    
  

      
        

 

   
                                                                                 

       is a Gaussian smoothing function with scaling parameter   to select the proper scale 

of edge analysis. The edge map is then used in a voting process to maximize the defined 

Hough transform.  

           ∑ (             )

 

   

                                                                                                   

 As a standard image analysis tool used for finding curves that can be defined in a 

parametrical form such as lines and circles.[5] Maximum point in the Hough space 

corresponds to the radius r and centre coordinate    and     of the circle best defined by the 

edge points 

 (                                                                                                                                         (33) 

           ∑ (             )                                                                                                       

 

   

 

Where            shows a circle through a point, the coordinates of           define a 

circle 

  
    

                                                                                                                                       (35) 

For edge detection for iris boundaries the above equation becomes 

       
         

                                                                                              (36) 
 

Simple Elastic Curve 

For a curve represented as a set of points a simple elastic energy term is 
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Where  is the internal elastic component and  (s) control the internal elasticity of the 

curves 

This makes the curve to shrink to a point (like a very small elastic band). 
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       can also be represented based on the concept of the expression derived by [6] 

                                                                               41) 

Next, our work introduces     as the strength of the internal elastic component which can be 

controlled, i.e 
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or 

         ∑  
 

   

   

                                                                                                                                

By dynamic programming, energy is minimized, that is (43) is iterated until optimal position 

for each point in the centre of the iris i.e. the snake is optimal in the local search space 

constrained  

                                                                                           (44) 

Curvature of level lies in a slightly smoothed image is used to detect corners and 

terminations in an image. Now, 

Let C (   ) = G  
                                                                                                                        (45) 

be a slightly smoothened version of the image. 

C = curvature of the image 

           (
  

  
) be the gradient of the image, where    and    are the coordinates of the 

pupil.  

Angle between the images of the curvatures 

And let n = (cos , sin ) be unit vector along the gradient direction    
  

  
= (- sin , cos ) be unit vector along the perpendicular to the gradient direction. 

The termination function energy       is represented by 
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Constraint energy of some system, including the original snakes' implementation, allowed for 

user interaction to guide the snakes, not only in initial placement but also in their energy 

terms. Such constraint energy Econ can be used to interactively guide the snakes towards or 

away from particular features 
 

Illustration 

Find the area enclosed by the curve          and the radius vectors at           
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So the area of a polar sector is easy enough to obtain. It is simply  

  ∫
 

 

  

  

                                                                                                                                          

To find the volume generated when the plane figure bound by        and the radius 

vectors at      and     , rotates about the initial line. 
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Figure 1The volume of plane figure bounded by the polar curve 

If we regard the elementary sector OPQ as approximately equal to the      the centroid C 

is distance 2r/3 from O. 

We have: Area     
 

 
             

Volume generated when OPQ rotates about       

   = area OPQ x distance travelled by its centroid (Pappus) 
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Then when      
  

  
  

                                                                                            

(56) 
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Correct. This is another standard result. 

To find the length of arc of the polar curve r = f( ) between     and      

 

 

 

 

 

 

 

 

 

Figure 2The length of arc of the polar curve 
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In the effort to find a good criterion for characterizing what the “best” function   should be, 

[6] sort for a criterion to minimize, which corresponds better to the structure of the images. 

They proposed the consideration of the “Bounded Variation” of the function   as a measure 

of the optimality of an image. The criterion is approximately the integral ∫ 
|     |   The 

main advantage is that this integral can be defined for functions that have discontinuities 

along hyper surfaces (in 2-dimensional images, along 1-dimensional curves), and this is 

essential to get a correct representation of the edges in images to facilitate pattern recognition  

The problem to solve is  

Minimize      {∫ 
|     |   }                                 (63) 

We use the notion of    C onvergence to propose a numerical approach for computing a 

solution [7] presents the symmetry consideration and by the centering theorem of Fourier 

transform, we have reinforced the fact that the pixel Number,       where     , is best 

in terms of speed, for the FFT and the IFFT operations for image processing for pattern 

recognition. When   is not a positive integer power of 2, we have modified/ improved the 

Mixed Radix Algorithm by stretching    to the next integer power of 2, using our established 

rule for stretching i.e. 0’s for even values of   and 1’s for odd value of   .when compared 

with the MATLAB fft ( ) operator, it clearly shows an improvement in speed, over the 

Mixed Radix Algorithm.  

Refer [7] and [8]    convergence is a special notion of convergence that is adapted to 

variation problems. If one is looking for the minimizes of a function          (where X is 

some space) and wants to approximate it with minimizers     of approximate 

problem             , One wonders when       converges to a minimizer of  ? 

Considering the classical notion of limits of functions, only the uniform convergence seems 

suitable to handle this problem. However, this notion of convergence is far too strong for 

most applications. 
 

9.0 Conclusion 

In the application of image processing tools, an image is first passed through the PID low 

pass filter which allows the image intensity to be adjusted by the image intensity adjustment 

tools. Then, finally sobel edge detector is used to enhance the outline of the image. This 

order is necessary for the processing because sobel edge detector is very sensitive to noise 

and needs to be filtered out before the edge detector application. More so, since the gradient 

of the sobel edge detector is related to the change in intensity at the edge of an object, the 
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image intensity adjustment is used to produce a higher contrast image. As image intensity 

adjustment can improve the intensity of the image as well as noise within the image, the 

noise must be filtered out before the intensity adjustment. In [3], Proportional Integral 

Derivative Controller Filter (PID) is employed to reduce the effect of noise.The new 

Multiscale Approach method for edge detection was able to detect iris region (pupil, outer 

boundary circle) using Snake Active Contour and Standard Galerkin Method. This in turn 

greatly reduces the search for the Hough transform, thereby improving the overall 

performance.  
 

10. Recommendations 

The Snake method introduces a Multiscale approach for edge detection by using active 

Contour model for efficiently detecting the iris region for use in the future extraction stage. 

Once this is done, a combined feature extraction scheme using Mat-lab algorithm 

components to extract all texture information from orientation in horizontal and vertical 

details is employed to obtain useful results.  
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Abstract.  
In this paper,we formulate some results on strongly invariant subgroup. We show that diagonal 

subgroups are not strongly invariant, the union of a strongly invariant subgroup of a group   and a 

direct factor of   is not strongly invariant.We establish that every subgroup   of a torsion group    is 

strongly invariant if  [ ] is strongly invariant in   . The union and the intersection of a torsion part of 

a mixed group are strongly invariant. We finally show that every cyclic group of prime order is 

strongly invariant simple.  
 

 .  Introduction  

The concept of fully invariant subgroup was introduced by F. Levi under the German 

namevollinvariant in[ ] Fully invariant extending property (FI-extending property) for 

abelian groups was studied in[ ], where it was proved thata torsion group has the FI-

extending property if it is a direct sum of a divisible group and separable  -groups, every 

summand of a group with theFI-extending property enjoys theFI-extending property, a mixed 

abelian group has theFI-extending property if it is a direct sum of torsion and torsion-free 

Abelian group, both with the FI-extending property.  

Chekhlov in[ ], described the intermediately fully invariant subgroup (ifi-subgroup) 

of divisible, torsion and torsion-free groups, it is shown thatsum of ifi-subgroups is againifi-

subgroup.The intersection of the subgroup    with the subgroup    of a group       

such that              is an ifi-subgroup in   . Furthermore, in a torsion 

group   a subgroup    is intermediately inert in    if every  -component of    is 

intermediately inert in  -component of   , and finally, every homogeneous separable torsion-

free group ofrank    isifi-simple.  
The notion of strongly invariant subgroups ofAbelian groupswas introduced and studied 

in [ ] as an extension of fully invariant subgroups, and therein, it was shown that ina torsion 

group   a subgroup    is strongly invariant if   -componenet of    is strongly invariant in -

component of   . For a reduced  -group the only strongly invariant subgroups are the 

subgroups   [  ]. The intersection of the strongly invariant subgroup     and the subgroup    of 

a group      such that                is strongly invariant in   .For atorsion-

free group, a subgroup    is not strongly invariant if it contains free direct summand. It was also 

discovered that rank 2 torsion-free group has no cyclic strongly invariant subgroup. The torsion 

part of subgroup   of a mixed group   is strongly invariant in torsion part of    if it is strongly 

invariant in    and infinite cyclic subgroups of    and a subgroup that contains a free direct 

summand are not strongly invariant.More results like; a  -group is fully invariant simple if it is 

elementary, a torsion group is strongly invariant simple if it is an elementary -group, genuine 

mixed groups are not strongly invariant simple and any torsion-free divisible group is strongly 

invariant simple are established.  

The strongly invariant subgroup of torsion-free groups was studied in [ ].Some 

results like; in a divisible torsion-free group every fully invariant subgroup is strongly 

invariant, every homogeneous separable torsion-free group is strongly invariant simple, 
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every strongly invariant subgroup coincides with some direct summand of the group, and the 

sum of strongly invariant subgroups is again strongly invariant subgroup. 

This paper extend some of the results in[ ]. We study the strongly invariant 

subgroup of the direct product of two subgroups, the strongly invariant subgroup of torsion 

group, mixed group and in particular, those of strongly invariant simple group and obtain 

some results.   
 

 .  Basic Definitions 

Definition 1. (Fully invariant subgroup) 

A subgroup   of a group   that is carried into itself by every endomorphism of   is said to 

be a fully invariant subgroup of  . [ ]. 
Example 2.1.Commutator subgroups are fully invariant, in a cyclic group every 

subgroup is fully invariant, and every group is fully invariant as subgroup of itself.  
 

Definition 2. (Strongly invariant subgroup) 

A subgroup    of a group  will be called strongly invariant in  , if       for every 

group homomorphism        [ ]  
Example 2.2.Normal Sylow-subgroup, normal Hall subgroup are strongly invariant 

and the center of the quaternion group   is a strongly invariant subgroup of  .  
 

Definition 3. (Torsion group) 

An Abelian group is called a torsion or periodic group if every element of   is of finite 

order.[ ]. 
Example 2.3.Every finite group is periodic.  

 

Definition 4. (Torsion-free group) 
An Abelian group is called a torsion-free if all its elements, except for 0, are of infinite order. [ ]  

Example 2.4.The set of integers under addition is a torsion-free group.  
 

Definition 5.(Mixed group)An Abelian group is called mixed group if it contain both 

nonzeroelementsof finite order and elements of infinite order.[ ]. 

Example 2.5.The group       {(    )          and    } is a mixed group. 
 

Definition 6. (Strongly invariant simple group) 

An Abelian group is said to be strongly invariant simple if it has non nontrivial strongly 

invariant subgroup.[ ]. 
Example 2.6.The group         is strongly invariant simple group. 

 

Definition 7. (Direct factor) 

A subgroup   of a group   is called direct factor of   if there is a subgroup   of a group   

such that   is the internal direct product of   and  . [ ]. 
Example 2.7.Let       {           } and    {     }be a subgroup of    then    is a 

direct factor of    since there is     {   }in   with        and      { }   
 

Definition 8. (Diagonal subgroup) 

Let         be a direct product of two isomorphic groups     and    then a 

subgroup    of   is called diagonal subgroup if          and           . 
[ ]. 
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Example 2.8Let     {       } be a Klein four-group and let  {   }and    
{   }be two subgroups of     such that       , then a subgroup   {   } is a 

diagonal subgroup of   . 
 

 .  Some Existing Results 
 

Theorem     Fully invariant direct factors are strongly invariant.[ ]. 
 

Theorem     If a group        and    is fully invariant subgroup of    , then  
            [ ]. 
 

Theorem      Any sum of strongly invariant subgroups is a strongly invariant 

subgroup.[ ]  
 

Theorem     Let   be strongly invariant subgroup of a group        then  
            and     ,   are strongly invariant in   and   respectively. 

Conversely, if     and   are strongly invariant subgroups of    and    respectively, 

then     is strongly invariant in    if and only if for every         ,        
  and for every         ,           [ ]  
 

Lemma        In any group    , for any positive integer    , the subgroup [ ]  
{        } is strongly invariant in  . [ ]. 
 

Theorem     Let   be a subgroup of a torsion group  . Then   is strongly invariant 

subgroup of    if and only if for every prime p,     is strongly invariant in  .[ ]. 
 

Theorem     Let   be a subgroup of a mixed group   . Then      is strongly invariant 

subgroup of       if and only if        is strongly invariant subgroup of  .[ ]. 
 

Theorem     [ ]. 
i. A  -group   is fully invariant simple if and only if it is elementary. 

ii. Genuine mixed groups are not strongly invariant simple. 

iii. A torsion group is strongly invariant simple if and only if it is an elementary  -

group. 
 

 .  Main Results  
 

Theorem     Let   be strongly invariant subgroup of a group         , and  
            then        and   are not strongly invariant in   and   

respectively if and only if      { } and      { }  
 

Proof. Suppose     is strongly invariant in    then        this implies     . But 

since     { } there exists        such that      and so      which is a 

contradiction. Therefore,    is not strongly invariant in   . Similarly,    is not 

strongly invariant in   .Conversely,if      { } and      { }then       and  
 are strongly invariant in   and   respectively, which is a contradiction. Hence,     
{ } and      { }  
 

Theorem     Let        be the direct product of two isomorphic groups, then the 

diagonal subgroup    of   is not strongly invariant. 
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Proof. Suppose      is strongly invariant subgroup of     then                 
since   is a diagonal subgroup of    , we have          and          
   and so               
 

Theorem     Let   be a subgroup of a torsion group  . Then    is strongly invariant 

subgroup of    if and only if for any positive integer n,  [ ] is strongly invariant in  [ ]. 
 

Proof. Necessity. For any positive integer  , let     [ ]   [ ] be a homomorphism 

then      [ ]   [ ]. Since    [ ]    and  [ ]    we can extend the mapping  
     and by hypothesis           Thus, we have       [ ]    and so   [ ]  
   [ ]   [ ]  
Sufficiency. Let         be a group homomorphism. Since   [ ] is a subgroup of    

and   [ ] is a subgroup of    we can restrict the mapping to     [ ]   [ ] and by 

hypothesis   [ ]   [ ] for any positive integer  . Therefore,          
 

Theorem     Let   and   be subgroups of a mixed group    such that       . If 

      is strongly invariant in      , then            is strongly invariant in   . 
 

Proof. Let    be strongly invariant subgroup of         then           and 

so              . From theorem 3.7 we infer that            is strongly 

invariant in   . 
 

Theorem     Let    and   be subgroups of a mixed group     If        and       are 

strongly invariant in     then            is strongly invariant in     if and only if  

    and       are comparable.  

Proof. Let          be strongly invariant in       

then               .If      and       are not comparable we have            
 , which is a contradiction.          Therefore,    and      are comparable. Conversely, 

Suppose     and         are comparable such that             then            
     and so            is strongly invariant in   . Similarly, if            
also          is strongly invariant in   .  
 

Theorem     Every cyclic group of prime order   is strongly invariant simple.  
 

Proof. Let    be a cyclic group with a generator     then                 such 

that                          and  y  m  it follows that 

                              
   .  

Hence,   is abelian.  

Let   be any subgroup of   . Since   is cyclic for every homomorphism       , there 

exists     such that        ,             this implies    is strongly 

invariant.But, since        by Lagrange’s theorem      |  and so   is a trivial 

subgroup. Hence    is strongly invariant simple. 
 

 .  Conclusion and Recommendation  

In this note we discussed the conditions for a subgroup   of a group   which is the direct 

product of its two subgroups to be strongly invariant. The concept of torsion Abelian group, 

mixed Abelian group and strongly invariant simple Abelian group have been discussed and 

some related results were obtained. We recommend for the investigationof theunion and 
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intersection of strongly invariant subgroups of torsion-free group, torsion group and strongly 

invariant subgroups of non Abelian groups. 
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