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Abstract 
The normality, the center and the derived notion of central nilpotency are important concepts in loops. 

Determining nilpotency class of loops of small orders is the main focus of this paper. Examples of 

some constructed commutative and non-commutative loops are shown. In order to determine the 

nilpotency class of the constructed loops using subnormal series method, we obtain the nuclei of the 

loops, the nucleus, the centrum, the center, the left and right cosets, the quotient set (factor loop), 

normal and proper subloops. Using subnormal series method, the nilpotency class of such loops were 

obtained and presented. A brief characterization of the constructed commutative loops of order 12 and 

of order 16 were obtained and presented.  

Keywords: Centrally nilpotent, Nilpotency class, Normal subloop, Proper subloop, Center of 

Quotient set,  Subnormal series. 
 

Introduction 

As it is well known, a group is of nilpotency class at most two if and only if its inner 

mapping group is abelian. In 1946 Bruck published a long paper that influenced the 

development of loop theory for decades, in which he proved that a loop of nilpotency class 

two possesses an abelian inner mapping group. The converse problem of Bruck’s result: Is 

every finite loop (even infinite) with abelian inner mapping group of nilpotency class at most 

two? While working on this problem, Niemenmaa and Kepka (1994) proved that a finite loop 

with abelian inner mapping group must be nilpotent. However, Vesanen, as reported in 

Niemenmaa and Rytty (2011), found a nilpotent loop of order 18 with nilpotency class three 

such that the inner mapping group is not even nilpotent. This is also a partial counter of the 

converse of Bruck’s result of 1946. Kepka (1998) and Niemenmaa (2009) later improved 

upon their result of 1994 and showed that if the inner mapping is abelian and finite, then the 

loop is nilpotent. But they did not establish an upper bound on the nilpotency class of the 

loop, and indeed, no such bound is presently known. For a long time, there was no example 

of a nilpotency class greater than two. Infact, for many years the prevailing opinion has been 

that all such loops have to be of nilpotency class two. This seems to have been well 

substantiated if the loop is a group, then we clearly get this restriction on the nilpotency 

class. Some well-behaved classes of loops fulfill this restriction, too.  However, in 2004, 

Csӧrgӧ used the technique of H-connected transversals to construct a counter example of a 

loop of order 128 of nilpotency class three with abelian inner mapping groups. This was a 

counter example to this long-standing conjecture. This result was published in 2007.  Nagy and 

Vojtechovsky (2008) used GAP, to analyze the loop structure of Csӧrgӧ counter example and 

they could construct by some algorithm another loop of order 128 with nilpotency class 3. Nagy 

and Vojtechovsky (2009) constructed a Moufang loop of order 2
14

 of nilpotency class 3, and with 

abelian inner mapping group and at the same time they showed that Moufang loops of odd order 

with abelian inner mapping groups have nilpotency class at most two. 
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Kinyon, Veroff and Vojtechovsky (2012) says that Bol loops of nilpotency class 3 does exist. 

Recently, Drapal and Vojtechovsky (2011) with the aid of LOOPS package in GAP 

constructed the multiplication table of Csӧrgӧ counter example loop. By analyzing the 

structure of the counter example, they developed a method by which they were able to 

construct a class of other examples. Drapal and Vojtechovsky (2011) showed using a new set 

up that there are many examples of loops of Csӧrgӧ type of order 128. They describe all 125 

groups of order 128 that can be used in the construction as the starting point. These loops Q 

with commutative inner mapping groups and nilpotency class equal to 3 are called in 

literature, loops of Csӧrgӧ type. The focus of this paper is not on the nature of the inner 

mapping group of the constructed loops of small order (orders 12, 16 and 18) but using the 

subnormal series method to determine their nilpotency classes. 

 

Definition 1.1   

A loop is a quasigroup with an identity element  such that ѱ: ×  

then the following hold  

(i)    

(ii)  implies that 
-1

 and  implies that
-1   

(iii) .  

The uniqueness of equation (ii) shows the existence of inverses and the separation of the 

inverses into two is to show that Loops are not necessarily commutative under the operator.  
 

Definition 1.2:  Let ( ) be a loop.  

The Left nucleus ( ) is denoted as   = { :  = ,

 } 

The Right nucleus  is denoted as  = {

} 

The Middle nucleus  is denoted as = {

} 

The Nucleus of  is denoted as  = . 

The Centrum  is denoted as  = { :  = ,  } 

The center  is denoted as  .   

Remark 1.1: Each of these nuclei is a subloop of ).  
 

Definition 1.3: Let  be a loop.  

(a)   A subloop  of a loop  is said to be normal in  if 

         

(b)   A subnormal series of a loop  is a finite sequence of subloops  

        = n    n-1    ………… 1   o = , Where  is a normal subloop of . 

If each        

         is normal in  then the series is called a normal series.  

Remark 1.2:  (i) The center is always a normal subloop of ). 

(ii)   The length of a subnormal series or a normal series is the number of proper inclusions. 
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(iii)  The center of a quotient set given as ( ) is used to obtain the series of normal 

subloops. 
 

Definition 1.4:  Let  be a loop. The quotient set (factor loop) of  in  denoted as 

 is the left (right) cosets of  in that coincide.  

Definition 1.5: If we write o = , = and   = ( ), then we obtain 

series of normal subloops of the loop . If  is a proper subloop of  but n =

, then we say that the loop  is (centrally) nilpotent of class . The smallest such  

is called the nilpotency class. 
 

Definition 1.6: A loop is called: (a) a weak inverse property loop  if and only 

if it obeys the identity:   =    or     =      

(b) a flexible loop if the flexibility property  =   holds for all  . 
 

In this paper, our interest is not on the nature of the inner mapping group of the 

constructed loops but determining their nilpotency class. In next section, we will present 

some examples of constructed loops and their nilpotency class 
 

Main Results 
In this section, loops of orders (orders 12, 16 and 18) are constructed and using the 

Subnormal 

Series method, their nilpotency classes were determined. 

Example 2.1:  A COMMUTATIVE LOOP OF ORDER 12 

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12

2 2 1 4 3 6 5 8 7 10 9 12 11

3 3 4 1 2 8 7 6 5 12 11 10 9

4 4 3 2 1 7 8 5 6 11 12 9 10

5 5 6 8 7 10 9 12 11 1 2 4 3
6 6 5 7 8 9 10 11 12 2 1 3 4

7 7 8 6 5 12 11 10 9 4 3 1 2

8 8 7 5 6 11 12 9 10 3 4 2 1

9 9 10 12 11 1 2 4 3 8 7 6 5

10 10 9 11 12 2 1 3 4 7 8 5 6

11 11 12 10 9 4 3 1 2 6 5 8 7

12 12 11 9 10 3 4 2 1 5 6 7 8
 

Table 1 (commutative loop of order 12) 

Theorem 2.1:  Example 2.1 is a commutative loop of order 12 that is centrally nilpotent of 

Class 2, that is a weak inverse property and flexible loop. 

Proof: 

First, we show that is a non-associative loop. 
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(8  8)  10 = 8    but    8  (8  10) = 6 

Thus, it is non-associative. 

Next we show that   is a commutative loop. 

 =   holds for all  . Hence it is a commutative loop. 

The nuclei of the loop are  =  ,  =  ,  =  

.   = {1, 2, 3, 4}, The Centrum is obtained as:    = {1, 2, 3, 4, 5, 6, 7, 

8, 9, 10, 11, 12} 

The Center follows as:    = {1, 2, 3, 4}.  

Let 1 = {1, 2, 3, 4}, then = ( ) = .  

Now representing these in a finite sequence of subnormal series of the loop, we have 

o = , 1 =  = {1, 2, 3, 4}, 2 = ( ) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} = 

.  

Since 1 is a proper subloop of the loop  and 2 = , then the loop  is centrally 

nilpotent of class 2. Next, to show that  is a weak inverse property loop, it is needed to 

show that 

  =    or     =      

LHS =  =  RHS 

For all    and  since  is a commutative loop. 

Since L.H.S = R.H.S, it is a weak inverse property loop. 

Next, to show that  is a flexible loop, it is needed to show that  =   holds for 

all  .  =   since  is commutative. Thus, it is a flexible 

loop. 

The proof for commutativity, weak inverse property and flexibility property were confirmed 

with GAP package version 3.1.0 available at www.math.dv.edu/loops. See appendix. 
 

 Example 2: A COMMUTATIVE LOOP OF ORDER 16 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15

3 3 4 1 2 8 7 6 5 12 11 10 9 16 15 14 13

4 4 3 2 1 7 8 5 6 11 12 9 10 15 16 13 14

5 5 6 8 7 10 9 12 11 14 13 16 15 1 2 4 3

6 6 5 7 8 9 10 11 12 13 14 15 16 2 1 3 4

7 7 8 6 5 12 11 10 9 16 15 14 13 4 3 1 2

8 8 7 5 6 11 12 9 10 15 16 13 14 3 4 2 1

9 9 10 12 11 14 13 16 15 4 3 1 2 8 7 6 5

10 10 9 11 12 13 14 15 16 3 4 2 1 7 8 5 6

11 11 12 10 9 16 15 14 13 1 2 4 3 6 5 8 7

12 12 11 9 10 15 16 13 14 2 1 3 4 5 6 7 8

13 13 14 16 15 1 2 4 3 8 7 6 5 12 11 10 9

14 14 13 15 16 2 1 3 4 7 8 5 6 11 12 9 10

15 15 16 14 13 4 3 1 2 6 5 8 7 10 9 12 11

16 16 15 13 14 3 4 2 1 5 6 7 8 9 10 11 12  

Table 2 (Commutative loop of order 16) 

http://www.math.dv.edu/loops
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Theorem 2.2:  Example 2.2 is a commutative loop of order 16 that is centrally nilpotent of 

, that is an Automorphic inverse property and a flexible loop. 

Proof: 

First, we show that is a non-associative loop. 

(7  7)  11 = 2    but    7  (7  11) = 3.  Thus, it is non-associative. 

Next we show that   is a commutative loop. 

 =   holds for all  . Hence it is a commutative loop. 

The nuclei of the loop are  =  ,  =  ,   

= .   = {1, 2, 3, 4}, The centrum is obtained 

accordingly as:    = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The Center follows as: 

 = {1, 2, 3, 4}.  

Let 1 = {1, 2, 3, 4}, then = ( ) =   

Now representing these in a finite sequence of subnormal series of the loop, we have 
 

Example 2.3: A NON- COMMUTATIVE LOOP OF ORDER 16 

 

Table 3 (Non-Commutative loop of order 16) 

Theorem 2.3: Example 2.3 is a non-commutative loop of order 16 that is centrally nilpotent 

of . 

Proof: 

First, we show that is a non-associative loop. 

(10  10)  11 = 16    but    10  (10  11) = 13.  Thus, it is non-associative. 

Next we show that   is a non-commutative loop. 

* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

2 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 

3 3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14 

4 4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13 

5 5 6 8 7 1 2 4 3 13 14 16 15 10 9 11 12 

6 6 5 7 8 2 1 3 4 14 13 15 16 9 10 12 11 

7 7 8 6 5 3 4 2 1 15 16 14 13 12 11 9 10 

8 8 7 5 6 4 3 1 2 16 15 13 14 11 12 10 9 

9 9 10 11 12 15 16 13 14 5 6 7 8 3 4 1 2 

10 10 9 12 11 16 15 14 13 6 5 8 7 4 3 2 1 

11 11 12 9 10 13 14 15 16 7 8 5 6 1 2 3 4 

12 12 11 10 9 14 13 16 15 8 7 6 5 2 1 4 3 

13 13 14 16 15 12 11 9 10 1 2 4 3 7 8 6 5 

14 14 13 15 16 11 12 10 9 2 1 3 4 8 7 5 6 

15 15 16 14 13 10 9 11 12 3 4 2 1 5 6 8 7 

16 16 15 13 14 9 10 12 11 4 3 1 2 6 5 7 8 
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 =  Thus, it is a non-commutative loop. 

The nuclei of the loop are  =  ,  =  ,   

=  .   = {1, 2}, The Centrum is obtained accordingly as:  = 

{1, 2}. The Center follows as:    = {1, 2}.  

Let 1 = {1, 2}, then = ( ) =  which is the next 

proper subloop that is normal in . Continuing the subnormal series gives  

= ( ) = . Now representing these in a finite sequence of 

subnormal series of the loop, we have o = , 1 =  = {1, 2},  2 = =  (

) ={1, 2, 3, 4}, 

= ( ) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} = .  

Since 2 is a proper subloop of the loop  and 3 = , then the loop  is centrally 

nilpotent of class 3. 

Example 2.4: A NON-COMMUTATIVE LOOP OF ORDER 18 

Table 4 (Non-commutative loop of order 18) 

Theorem 2.4: Example 2.4 is a non-commutative loop of order 18 that is centrally nilpotent 

of . 

• 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

2 2 3 1 5 6 4 8 9 7 11 12 10 14 15 13 17 18 16 

3 3 1 2 6 4 5 9 7 8 12 10 11 15 13 14 18 16 17 

4 4 5 6 1 2 3 11 12 10 8 9 7 17 18 16 14 15 13 

5 5 6 4 2 3 1 12 10 11 9 7 8 18 16 17 15 13 14 

6 6 4 5 3 1 2 10 11 12 7 8 9 16 17 18 13 14 15 

7 7 8 9 11 12 10 14 15 13 17 18 16 1 2 3 5 6 4 

8 8 9 7 12 10 11 15 13 14 18 16 17 2 3 1 6 4 5 

9 9 7 8 10 11 12 13 14 15 16 17 18 3 1 2 4 5 6 

10 10 11 12 8 9 7 17 18 16 14 15 13 5 6 4 1 2 3 

11 11 12 10 9 7 8 18 16 17 15 13 14 6 4 5 2 3 1 

12 12 10 11 7 8 9 16 17 18 13 14 15 4 5 6 3 1 2 

13 13 14 15 17 18 16 5 6 4 1 2 3 8 9 7 11 12 10 

14 14 15 13 18 16 17 6 4 5 2 3 1 9 7 8 12 10 11 

15 15 13 14 16 17 18 4 5 6 3 1 2 7 8 9 10 11 12 

16 16 17 18 14 15 13 1 2 3 5 6 4 11 12 10 8 9 7 

17 17 18 16 15 13 14 2 3 1 6 4 5 12 10 11 9 7 8 

18 18 16 17 13 14 15 3 1 2 4 5 6 10 11 12 7 8 9 
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Proof: 

First, we show that is a non-associative loop. 

(8  8)  10 = 1    but    8  (8  10) = 5.  Thus, it is non-associative. 

Next we show that   is a non-commutative loop. 

 =  Thus, it is a non-commutative loop. 

The nuclei of the loop are  =  ,  =  , =  .   

 = {1, 2, 3}, The centrum is obtained accordingly as:  = {1, 2, 3, 4, 5, 6}.  

The Center follows as:    = {1, 2, 3}.  

Let 1 = {1, 2, 3}, then = ( ) =  which is 

the next proper subloop that is normal in . Continuing the subnormal series gives  

= ( ) = . Now representing these in a finite sequence of 

subnormal series of the loop, we have  o = , 1  = {1, 2, 3},  2 = =  ( ) = 

{1, 2, 3, 4, 5, 6}, 

= ( ) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} = 

.  

Since 2 is a proper subloop of the loop  and 3 = , then the loop  is centrally 

nilpotent of class 3. 

 

3  Concluding Remarks 

Determining nilpotency class of loops of small order was the focus of this paper. In 

achieving this, a simplified step by step guide to obtaining nilpotency classes of  loops using 

the subnormal series method was presented. The result of the loops constructed in this paper 

shows that the commutative loops of order 12 and 16 are centrally nilpotent of class two, 

while the non-commutative loops of order 16 and 18 are centrally nilpotent of class three.  

The characterizations of the constructed commutative loops showed that the loop of order 12 

is a weak inverse property loop and a flexible loop, while the constructed commutative loop 

of order 16 is an automorphic inverse property loop and a flexible loop. 
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