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Abstract 
In this article,SIQR model is proposed, the transmission of Lassafever control dynamics is analyzed 

and studied using stability theory of differential equations at both theoretical level and using 

numerical simulation, the sufficient conditions for disease free equilibrium is obtained.The infection-

free stability is investigated. Using Jacobian matrix approach. It is shown that the introduced 

quarantine parameter helps in controlling and eradication of the Lassa fever virus in the population 

with respect to time. The analysis further reveals that the disease can be controlled if the basic 

reproduction number  is less than one regardless of the initial population. 
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Introduction  

The greatest threat to human is infection diseases, the outbreak of infection diseaseshas 

caused the loss of millions of lives, great pain to families and also involves expenditure of 

huge amount of money in controlling the disease. The whole world has devoted efforts to 

control the spread of diseases. Mathematical models which describe the dynamics of 

infectious diseases have recently become important tools in analyzing the spread and control 

ofinfectious diseases[1,2,3,4]. Many mathematical models have already been proposed and 

studied to investigate the transmission and control of the dynamics of infectious diseases, 

these models provides the theoretical and quantitative bases for the prevention and control of 

infectious diseases [1]. 

Lassa fever isa form of such infectious diseases, it is an acute viral hemorrhagic 

fever (VHF) caused by the Lassa viruswhich is endemic in the belt of West Africa (Nigeria, 

Guinea Liberia, Sierra Leone)affecting about 2 – 3  million persons with 5,000 - 10,000 

fatalities annually[5,6,7]. Transmission to Man occurs from exposure to excreta and blood of 

the rat, eating of contaminated food and water, or eating the rat as food.There may also be 

transmissions due to seasonal variations [6,8]. Infections also occur through contact with the 

fluid from an infected person [7,8,10]. Since its initial discovery in Lassa-Nigeria, outbreaks 

of Lassa fever have occurred repeatedly in other parts of Nigeria [9].   

Lassa fever outbreaks in endemic areas are increased by factors that promote activities of 

man to rodents which include poor sanitation, crowding, deforestation, bush burning, rodent 

hunting and some other Agricultural activities [11]. 

In this article we study and formulate susceptible-infectious-quarantine-recovered 

(SIQR) model for the transmission and control dynamics of Lassa fever.  

The schematic description of our model is given in the figure below 
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Fig. 1: Flow diagram of the dynamics Lassa Fever with Quarantine 
 

2.0 Model Formulation  

Lassa fevermodels usually encompassed individuals who have not come into contact with the 

virus known as susceptible humans (SH (t)). The susceptible rodents (SR (t)) become infected 

at the rate ϕ and infectious rodent infects human at the rate ρ, the infected human are treated 

at the rate δ, while some moved to the quarantine human class (QH (t)) at the rate α2. Those 

who are not aware of the treatment will be removed from the population through death at the 

rate α3,While the quarantine human class return to the susceptible human class at the rate 

γ1,The existence of region where the model is epidemiologically feasible is established. 

Stability analysis of the disease free equilibrium is investigated through the reproduction 

number obtained using the next generation operator approach.  

In this model, individuals are recruited into the susceptible population of human at the rate π, 

susceptible population of rodent at the rate η, The infection spread at the rate k, where k is 

the probability of getting Lassa fever, c is the contact rate, both human and rodent die 

naturally at the rate μ1 and μ2 respectively. 
 

 The total population of human and Rodent are given by 

 NH (t)=SH (t)+IH (t)+QR(t)+RH (t) and NR(t)=SR (t)+IR (t) respectively.  

N(t)=NR(t)+NR(t)= Total population size at  
   

  
  +    +  1     1    1          (1) 

   

  
   1     1+ 2 +              (2) 

   

  
  2     1+ 3         (3) 

   

  
  3     1+ 1         (4) 

 

For the Rodent Populations: 
   

  
     2+            (5) 

   

  
       2+           (6) 

S𝐻 𝑡  
S𝑅 𝑡  



340 
 

With initial conditions  

                                               . 

 The force of the infection   
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Existence of Disease Free Equilibrium (DFE) Ef 

In the absence of the disease, it implies that                               . 

Therefore the above system of equations is reduced to   
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Hence letting equation (9) and (10) to zero and solving them simultaneously, we get   

   
 

 1
    

 

 2 +  
   

Hence,  

                       (
 

  
       

 

    
  )               (11) 

 

Computation of the Basic Reproductive Number      of the Model 

The basic reproductive number (R0) is define as the number of secondary infections that one 

infectious individual would create over the duration of the infectious period, provided that 

everyone else is susceptible. R0=1 is a threshold below which the generation of secondary 

cases is not sufficient to maintain the infection in human community. If R0<1, the number of 

infected individuals will decrease from generation to next and the disease dies out and if 

R0>1 the number of infected individuals will increase from generation to the next and the 

disease will persist. 
 

We first rearranged the model Eqs (1) – (7) beginning with the infective classes to obtain the 

following equations below: 
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To compute the basic reproductive number (R0) of the model Eqs (1) – (7), we employ the 

next generation method as applied in [3]. Using the approach in [3] we have 
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Where   and    are the rate of appearances of new infections in compartment   and the 

transfer of individuals into and out of compartment   by all other means respectively. Using 

the linearization method, the associated matrices at disease-free equilibrium (  ) and after 

taking partial derivatives as defined by  
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Where  is non-negative and   is a non-singular matrix, in which both are the       

matrices defined by 
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(  )], with         and   is the number of infected 

classes. In particular      we have 
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and inverse of V is given such that  
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And characteristics polynomial of Eq. (24) is given as 
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 3 +
     

            
 2   (25) 

and the eigenvalues is given by 

 1     2     3  
     

            
    (26) 

The most positive eigenvalues being the    2 is the Basic Reproduction Number (    
Hence, we have          

   
     

            
      (27) 

Stability Analysis of Disease Free Equilibrium State     
To study the behavior of the system Eqs. (1) – (7) around the disease-free equilibrium state 
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The Jacobian   
  

  is given by  
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 Rewriting the matrix in Eq.(34), we get 
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The determinant and the trace of matrix (   )represented by Eq. (35) above is given 

   (   
)  

                

 
    (36) 
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     (   )   (  +  
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where, 

{
     +  +        +   

       +        +        +   
  (38) 

 

3.0 Numerical Simulations of the Experiments Model 

In order to verify the theoretical predictions of the model, the numerical simulation of the 

Lassa fever dynamics control model incorporating quarantine class Eqs. (1)–(6) was solved 

numerically using Runge-Kutta-Fehllberg 4-5th order method and implemented using Maple 

17 Software. 

The parameters used in the implementation of the model are given by [13,14] as 
 

Variables:      = 0.017,      = 0.0087, IH(t) = 0.000014,IR(t) = 0.007, RH(t) = 

0.00002,QH(t) = 0.000001. 
 

Parameters: π = 0.0000215, μ1 = 0.00000548,     0.00000213, α1 = 0.03, α2 = 0.08, α3 = 

0.77, ω = 0.01, ρ = 0.00005, ϕ = 0.06, η = 0.05, c = 0.00018, γ1 = 0.52. 
 

List of Numerical Experiments 

(1)  The effect of treatment  on the infected population when the quarantine rate is constant 

(2) The effect of quarantine rate on the infected population when contact rate is constant. 

(3) The effect of quarantine rate on the infected population with treatment rate when contact 

rate is constant 

(4) The effect of quarantine rate on the recovered population contact rate is constant. 
 

Experiment 1:  The effect of treatment on the infected population when the qurantine rate is 

constant 

 
 

Fig.2Graph showing the effecttreatment  on the infected population at low and high (   
                      when the contact rate is constant. 
 

Experiment 2:  The effect of quarantine rate on the infected population when contact rate is 

constant 
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Fig.3Graph showing the effectof quarantine on the infected population, when the quarantine 

rate is constant (                             
 

Experiment 3:  The effect of quarantine rate and treatment rate on the infected population 

when contact rate is constant 

 

 
Fig.3 Graph showing the effect ofquarantine and treatment rate, when the quarantine rate is 

constant (                            
Experiment 4:  The effect of quarantine rate on the recovered population contact rate is 

constant 

 

 

  

 

 

 

 

 

 

 

 

 

Fig.5:Graph showing the effect ofquarantine rate on recovered population when the 

quarantine rate is constant (                          
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Conclusion 

In this article, a new mathematical model which incorporated some important factors that 

plays significant role in the control of Lassa fever was developed. These factors are disease 

induced death rate and the quarantine parameter. The introduced quarantine parameter helps 

in controlling and eradication of Lassa fever virus with respect to time. Furthermore, the 

basic reproduction numbers    was calculated using the next generation approach. The 

analysis reveals that the disease can be control if the basic reproduction number   is less 

than one regardless of the initial population profile. Thus, every effort must be put in place 

by all concerned to prevent the virus infection by reducing   strictly to less than unity. 
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