AN INVENTORY MODEL FOR NON-INSTANTANEOUS DETERIORATING ITEM WITH TWO-PHASE DEMAND RATES AND EXPONENTIAL BACKLOGGING

by

Y. Bello1* & Y. M. Baraya2

Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria

*Corresponding Author: Email address; yusufbello2831@gmail.com, 08139007975

Abstract

This work investigates an inventory model for non-instantaneous deteriorating items with two-phase demand rates and exponential backlogging. Most of the time, the demand rate of newly produced products such as plasma, satellite, fridge, stabilizer, mobile phone, computer and fashionable garments increase with time. The demand rate for such products is constant for some period of time and after that, when the items become popular in the market, the demand for the items increase due to the quality of the products. Shortages are allowed and exponentially backlogged for there could be a situation where an economic advantage may be gained by allowing shortages. The objective of the model is to find the optimal cycle length and order quantity that minimizes the total average cost. Newton-Raphson method has been used to find the optimal cycle length and order quantity which minimizes the total average cost. The result illustrated with numerical examples. Sensitivity analysis is performed to show the effect of changes in the parameters on the optimum solution.

Keywords: Two-phase demand rate, non-instantaneous deterioration and exponential backlogging.

1. Introduction

Deterioration is usually referred to as damage, evaporation, spoilage, loss of potential or utility and so on, of a product through time. Some items like radioactive substances and highly volatile chemicals start deterioration process as soon as they are held in stock. These items are referred to as instantaneous deteriorating items. However, items like computer, mobile phone, television, plasma, and so on, do not start deterioration immediately they stocked until later, these items are referred to as non-instantaneous deteriorating items. So decay or deterioration of physical goods in stock is a very realistic feature. Therefore, there is need to consider deterioration when analyzing inventory models. Harris (1915) was the first researcher to develop an economic order quantity model. Wilson (1934) gave a formula to obtain economic order quantity. Whitin (1957) considered deterioration of the fashionable goods at the end of a prescribed shortage period. Ghare and Schrader (1963) developed a model for exponentially decaying inventory. An order-level inventory model for items deteriorating at a constant rate was presented by Shah and Jaiswal (1977). Aggarwal (1978) develop a note on an order level model for a system with constant deterioration. All these models discussed above are based on the constant deterioration rate, constant demand, infinite replenishment and no shortages. Other researches related to this area with shortage are Goswami and Chaudhuri (1995), Roy (2008), Baraya and Sani (2013), Datta and Kumar (2015), Janssen et.al (2016), Rangarajan and Karthikeyan (2017).

Inventory problems involving time variable demand pattern has received attention of researchers. It is observed that the demand rate of newly lunched products such as electronic goods, mobile phones, computers and fashionable garments increase with time. Silver and Meal (1973) established approximate solution techniques of deterministic inventory model with time dependent demand rate. Donalson (1977) introduced an inventory replenishment policy for a linear trend in demand having an analytical solution. Other papers related to this area are Ritchie (1980), Datta and Pal (1990), Dave and Patel (1994), Hariga and Goyal

377
Singh et al. (2017) considered an optimal inventory policy for deteriorating items with time proportional deterioration rate and constant and time dependent demand without shortage. In real life situation, some items start to deteriorate as soon as they are placed on the shelf while others do not. The items that do not start deterioration instantly include mobile phone, computer, fridge, plasma, satellite, stabilizer, and fashionable garments. In the market place the goal for many businesses is to have their item/service available with high quality when the demand arises. Failing to do so can result in not only loss in profit that could have been gained by selling the items service, but may also damage the business's reputation which indeed takes a long time to build up. In this work we extend the work of Singh et al. (2017) by developing an inventory model for non-instantaneous deteriorating items with two-phase demand with exponential partial backlogging rate.

2. Model Description and Formulation

The inventory system is developed on basic of the following assumption and notation.

Notation and Assumptions.

Notation:

- \(t_d \) The time at which deterioration sets in as well as demand rate changes with time
- \(t_1 \) The time at which inventory depletes to zero
- \(C_o \) The ordering cost per order
- \(C \) The unit cost of item
- \(i \) The inventory carrying charges
- \(C_s \) The shortage cost per unit of time
- \(C_v \) The lost sale per unit per time
- \(T \) The cycle time (decision variable)
- \(N \) The maximum inventory level
- \(B \) The backorder level during the shortage period
- \(R \) The order quantity during the cycle length
- \(z(t) \) The inventory level at any instant of time
- \(T - t_1 \) The length of the waiting time

Assumptions:

This model is developed under the following assumptions

1. The demand rate is defined as
 \[
 D(t) = \begin{cases}
 \alpha & 0 \leq t \leq t_d \\
 \alpha + \beta(t - t_d) & t_d \leq t \leq t_1
 \end{cases}
 \]

2. \(\omega, \ 0 < \omega < 1 \) is the deterioration rate. Deterioration sets in at \(t = t_d \) with constant deterioration rate
3. Shortages are allowed to occur and it is considered that only a fraction of demand is backlogged and it is denoted by $B(t) = \alpha e^{-\delta(T-t)}$ where $T - t_1$ is the length of the waiting time.

4. Replenishment is non-instantaneous and planning horizon is infinite.

5. The ordering cost, holding cost and unit cost remain constant.

Figure 1: The graphical representation of the inventory level.

2.1 Mathematical Formulation of the Model

The inventory level as depicted in figure 1 depletes during period $[0, t_d]$ due to market demand only. At time $t = t_d$ deterioration sets in and depletion of inventory occurs due to demand and deterioration during the period $t \in [t_d, t_1]$. Shortages are allowed to occur during the period $[t_1, T]$.

The inventory level in the time interval $[0, t_d]$ is given by

$$\frac{dz(t)}{dt} = -\alpha, \quad 0 \leq t \leq t_d$$

with boundary conditions $z(t) = N$ at $t = 0$ and $z(t) = S_d$ at $t = t_d$.

The inventory level in the time interval $[t_d, t_1]$ is given by

$$\frac{dz(t)}{dt} + \alpha z(t) = -[\alpha + \beta(t - t_d)], \quad t_d \leq t \leq t_1$$

with boundary conditions $z(t_d) = S_d$, and $z(t_1) = 0$.

The inventory level in the time interval $[t_1, T]$ is given by

$$\frac{dz(t)}{dt} = -\alpha e^{-\delta(T-t)}, \quad t_1 \leq t \leq T$$

with boundary conditions $z(t_1) = 0$ and $z(T) = B$.

The solution of equation (1) during the period $[0, t_d]$ is as follows:

$$\int dz(t) = -\alpha \int dt$$

or

$$z(t) = -\alpha t + C_1$$

where C_1 is the constant of integration.
Using the condition $z(t) = N$ at $t = 0$ in equation (4), we get
\[N = C_1 \]
and equation (4) become
\[z(t) = N - \alpha t, \quad 0 \leq t \leq t_d \]
(5)

Using the boundary condition $z(t) = S_d$ at $t = t_d$ in (5), we get
\[S_d = N - \alpha t_d \]
(6)

This implies at $t = t_d$, the inventory level has been reduced by αt_d.

Equation (2) being a first order linear differential equation whose integrating factor, $e^{\alpha t}$ is solved as follows:
\[
z(t)e^{\alpha t} = -\int e^{\alpha t}(\alpha t + \beta t - \beta)dt
\]
\[= -\alpha \int e^{\alpha t}dt - \beta \int te^{\alpha t}dt + \beta t_d \int e^{\alpha t}dt
\]
\[= -\frac{\alpha e^{\alpha t}}{\omega} - \frac{\beta t e^{\alpha t}}{\omega} - \frac{\beta t_d e^{\alpha t}}{\omega} + \frac{C_2}{\omega}
\]
\[= -\frac{\alpha e^{\alpha t}}{\omega} - \frac{\beta t e^{\alpha t}}{\omega} + \frac{\beta t_d e^{\alpha t}}{\omega} + C_2
\]
(7)

where C_2 is the constant of integration.

Using condition $z(t_1) = 0$ into (7), we get
\[0 = -\frac{\alpha e^{\alpha t_1}}{\omega} - \frac{\beta t e^{\alpha t_1}}{\omega} + \frac{\beta t_d e^{\alpha t_1}}{\omega} + C_2
\]
or
\[C_2 = \frac{\alpha e^{\alpha t_1}}{\omega} + \frac{\beta t_1 e^{\alpha t_1}}{\omega} - \frac{\beta e^{\alpha t_1}}{\omega^2} + \frac{\beta t_d e^{\alpha t_1}}{\omega}
\]
Substituting the value of C_2 into equation (7), we get
\[z(t)e^{\alpha t} = \frac{\alpha e^{\alpha t}}{\omega} + \frac{\beta t_1 e^{\alpha t}}{\omega} - \frac{\beta e^{\alpha t}}{\omega^2} + \frac{\beta t_d e^{\alpha t}}{\omega} - 0\]
\[+ \frac{\beta t_d e^{\alpha t}}{\omega}
\]
or
\[z(t) = \frac{\beta}{\omega^2}(1 - e^{\alpha(t_1 - t)}) + \frac{\beta}{\omega}(1 - e^{\alpha(t_1 - t)}) + \frac{\alpha}{\omega}(1 - e^{\alpha(t_1 - t)}) + \frac{\beta}{\omega}(t_1 e^{\alpha(t_1 - t)} - t)
\]
\[= \frac{1 - e^{\alpha(t_1 - t)}}{\omega} \left[\frac{\beta}{\omega} + \beta t_d - \alpha \right] + \frac{\beta}{\omega}(t_1 e^{\alpha(t_1 - t)} - t), \quad t_d \leq t \leq t_1
\]
(8)

Putting the condition $z(t_d) = S_d$ into equation (8), we get
\[S_d = \frac{1 - e^{\alpha(t_1 - t_d)}}{\omega} \left[\frac{\beta}{\omega} + \beta t_d - \alpha \right] + \frac{\beta}{\omega}(t_1 e^{\alpha(t_1 - t_d)} - t_d)
\]
(9)

Combining (6) and (9), the maximum inventory level is given by
\[N = \alpha t_d + \frac{1 - e^{\alpha(t_1 - t_d)}}{\omega} \left[\frac{\beta}{\omega} + \beta t_d - \alpha \right] + \frac{\beta}{\omega}(t_1 e^{\alpha(t_1 - t_d)} - t_d)
\]
(10)

The solution of equation (3) can be obtained as follows:
\[\int dz(t) = -\alpha \int e^{-\delta(T-t)} \\]
\[z(t) = -\frac{\alpha}{\delta} e^{-\delta(T-t)} + C_3 \]
Where \(C_3 \) is constant of integration

Applying the boundary condition \(z(t) = 0 \) at \(t = t_1 \) in (11) yields
\[0 = -\frac{\alpha}{\delta} e^{-\delta(T-t_1)} + C_3 \]
or
\[C_3 = \frac{\alpha}{\delta} e^{-\delta(T-t_1)} \]

Substituting \(C_3 \) in equation (11), we have
\[z(t) = -\frac{\alpha}{\delta} e^{-\delta(T-t)} + \frac{\alpha}{\delta} e^{-\delta(T-t_1)} \]
\[\leq T \]

The order quantity per order is given by
\[R = \text{Maximum inventory level} + \text{Backorder} \]
\[R = \alpha t_d + \left(1 - e^{\omega(t_1-t_d)}\right) \left(\frac{\beta}{\omega} + \beta t_d - t_d\right) + \frac{\beta}{\omega}(t_1 e^{\omega(t_1-t_d)} - t_d) \]
\[+ \frac{\alpha}{\delta} \left[1 - e^{-\delta(T-t_1)}\right] \]

The average total cost is composed of the following cost components:
(i) The ordering cost per order is given by \(C_0 \)
(ii) The holding cost is given by
\[HC = iC \int_{t_d}^{t_1} z(t)dt = iC \int_{t_d}^{t_1} z(t) dt + iC \int_{t_d}^{t_1} z(t)dt \]

Substituting equation (5) and equation (8) into above expression, we get
\[= iC \int_{t_d}^{t_1} (N - a_t)dt + iC \int_{t_d}^{t_1} \left(1 - e^{\omega(t_1-t)}\right) \left(\frac{\beta}{\omega} + \beta t_d - \alpha\right) \]
\[+ \frac{\beta iC}{\omega} \int_{t_d}^{t_1} (t_1 e^{\omega(t_1-t_d)} - t) dt \]
\[= iC \int_{t_d}^{t_1} \left[\alpha t_d + \frac{1}{\omega} \left(1 - e^{\omega(t_1-t_d)}\right) \left(\frac{\beta}{\omega} + \beta t_d - \alpha\right) + \frac{\beta}{\omega}(t_1 e^{\omega(t_1-t_d)} - t_d) - \alpha t\right] dt \]
\[+ \frac{iC}{\omega} \int_{t_d}^{t_1} (1 - e^{\omega(t_1-t)}\left(\frac{\beta}{\omega} + \beta t_d - \alpha\right) dt + \frac{\beta iC}{\omega} \int_{t_d}^{t_1} (t_1 e^{\omega(t_1-t)} - t) dt \]

381
\[
\begin{align*}
\text{(iii) The inventory deterioration cost during the period } [0, T] \text{ is given by} \\
DC &= C \omega \int_{t_d}^{t_1} z(t) dt
\end{align*}
\]
\[S_c = c_s \int_{t_1}^{T} -z(t) \, dt \\
= -\frac{c_s}{\delta} \int_{t_1}^{T} \left(e^{-\delta(T-t_1)} - e^{-\delta(T-t)} \right) \, dt \\
= -\frac{c_s}{\delta} \left[t e^{-\delta(T-t_1)} - \frac{e^{-\delta(T-t)}}{\delta} \right]_{t_1}^{T} \\
= -\frac{c_s}{\delta} \left[(T - t_1) e^{-\delta(T-t_1)} - \frac{1}{\delta} + \frac{e^{-\delta(T-t_1)}}{\delta} \right] \\
= -\frac{c_s}{\delta} \left[(T - t_1) e^{-\delta(T-t_1)} + \frac{1}{\delta} \left(e^{-\delta(T-t_1)} - 1 \right) \right] \\
\]
(vi) The total amount of backorder at the end of cycle is

\[B = \int_{t_1}^{T} \alpha e^{-\delta(T-t)} dt \]
\[= \left[\frac{\alpha}{\delta} e^{-\delta(T-t)} \right]_{t_1}^{T} \]
\[= \frac{\alpha}{\delta} e^{-\delta(T-T)} - \frac{\alpha}{\delta} e^{-\delta(T-t_1)} \]
\[= \frac{\alpha}{\delta} [1 - e^{-\delta(T-t_1)}] \]

The total average cost per unit time is a function of \(t_1 \) and \(T \) and is given by

\[ATC(t_1, T) = \frac{1}{T} [\text{holding cost + deterioration cost + shortage cost + backorder cost + lost sale}] \]
\[= \frac{1}{T} [C_0 + HC + DC + SC + B + LS] \]

Substituting the components of cost function, we have

\[ATC(t_1, T) = \frac{1}{T} \left(C_0 + \frac{\beta}{\omega} \left[1 - e^{\omega(t_1-t_d)} \right] + \frac{\alpha IC}{\omega^3} \left[e^{\omega(t_1-t_d)} - 1 \right] + \frac{\beta t_d iC}{\omega} \left[e^{\omega(t_1-t_d)} + \frac{t_d \omega}{2} \right] \right) \]
\[- \frac{\beta t_d ^2 iC}{\omega} \left[e^{\omega(t_1-t_d)} + \frac{1}{2} \right] + \frac{\beta t_d iC}{\omega} \left[1 - 2e^{\omega(t_1-t_d)} \right] + \frac{\beta t_d iC}{\omega} \left[e^{\omega(t_1-t_d)} + 1 \right] \]
\[- \frac{\alpha t_i C}{\omega} + \frac{\beta t_i C}{\omega^2} - e^{\omega(t_1-t_d)} - \frac{\beta t_i C}{\omega^2} \left[1 - e^{\omega(t_1-t_d)} \right] \]
\[+ \frac{C \alpha}{\omega} \left[e^{\omega(t_1-t_d)} - 1 - \omega(t_1-t_d) \right] + \frac{\beta t_i C}{\omega} \left[e^{\omega(t_1-t_d)} - \omega \frac{t_i}{2} \right] + \beta t_d iC - C \beta \frac{t_i ^2}{\omega} \]
\[- \frac{\alpha C}{\delta} \left[(T - t_i) e^{-\delta(T-t_i)} + \frac{1}{\delta} (e^{-\delta(T-t_i)} - 1) \right] + \frac{\alpha C}{\delta} \left[1 - e^{-\delta(T-t_i)} \right] \]
\[+ \alpha C \left[(T - t_i) - 1 + \frac{1}{\delta} e^{-\delta(T-t_i)} \right] \]

(19)

Since \(t_1 < T \), then by letting \(t_1 = rT \) with \(0 < r < 1 \) equation (19) reduces to

\[ATC(T) = \frac{C_0}{T} + \frac{\beta}{\omega^3} - \frac{\beta}{\omega^3} e^{\omega(rT-t_d)} + \frac{\alpha IC}{\omega^3} e^{\omega(rT-t_d)} - \frac{\beta t_d iC}{\omega} e^{\omega(rT-t_d)} \]
\[+ \frac{\beta t_d ^2 iC}{\omega} e^{\omega(rT-t_d)} \]
\[- \frac{\beta t_i C}{\omega^2} e^{\omega(rT-t_d)} - \frac{\alpha t_i C}{\omega^2} e^{\omega(rT-t_d)} - \frac{\beta t_d iC}{\omega^2} e^{\omega(rT-t_d)} + \frac{\beta r iC}{\omega^2} e^{\omega(rT-t_d)} - \frac{\beta r iC}{\omega^2} e^{\omega(rT-t_d)} + \frac{\beta r^2 iC}{\omega^2} + \frac{\beta C}{\omega^2} \]
\[- \frac{\beta C}{\omega^2} e^{\omega(rT-t_d)} + \frac{\alpha C}{\omega} e^{\omega(rT-t_d)} - \frac{\alpha C}{\omega} \frac{r}{T} - \frac{\beta r C}{\omega} e^{\omega(rT-t_d)} - \frac{\beta r^3 T^2 C}{2} \]
which is a cost function of a single variable T.

3. Optimal Decision

The necessary condition for the existence of optimum values of ATC (T) is given by

$$\frac{dATC(T)}{dT} = 0$$

and sufficiency condition is

$$\frac{d^2 ATC(T)}{dT^2} > 0$$

Differentiating (20) with respect to T, yield

$$\frac{dATC(T)}{dT} = -\frac{C_0}{T^2} + \frac{\beta r C}{T^2} + \frac{\beta C}{T^2} e^{\omega(T-t_d)} - \frac{\beta r C}{T^2} e^{\omega(T-t_d)} - \frac{\alpha r C_e}{T^2} e^{\omega(T-t_d)} + \frac{\alpha C_e}{T^2} e^{\omega(T-t_d)}$$

Integrating over T, we get

$$\int \frac{dATC(T)}{dT} dT = -\frac{C_0 T}{T^2} + \frac{\beta r C}{T^2} + \frac{\beta C}{T^2} e^{\omega(T-t_d)} - \frac{\beta r C}{T^2} e^{\omega(T-t_d)} - \frac{\alpha r C_e}{T^2} e^{\omega(T-t_d)} + \frac{\alpha C_e}{T^2} e^{\omega(T-t_d)}$$
\[\begin{align*}
&\frac{2\beta t_d iC}{\omega T} e^{\omega(T-t_d)} + \beta r t_d iC e^{\omega(t-t_d)} - \frac{\beta \omega iCr^2}{\omega T^2} e^{\omega(T-t_d)} - \frac{\alpha C}{\omega T^2} e^{\omega(T-t_d)} \\
+\frac{\alpha C r}{\omega T^2} e^{\omega r(T-t_d)} + \frac{\alpha C r}{\omega T} - \frac{\alpha C t_d}{\omega T^2} - \frac{\alpha r C}{\omega T} + \beta r^2 C e^{\omega r(T-t_d)} - \beta r^3 C T + \frac{\beta C t_d^2}{\omega T^2} e^{\omega T(T-t_d)} \\
+\frac{\alpha C s}{\delta T} (1-r) e^{-\delta T(1-r)} - \frac{\alpha r C s}{\delta T} (1-r) e^{-\delta T(1-r)} + \frac{\alpha C s}{\delta T} e^{-\delta T(1-r)} \\
+\frac{\alpha C s}{\delta T} (1-r) e^{-\delta T(1-r)} - \frac{\alpha C s}{\delta T} e^{-\delta T(1-r)} + \frac{\alpha C s}{\delta T} (1-r) e^{-\delta T(1-r)} \\
+\frac{\alpha C s}{\delta T} (1-r) e^{-\delta T(1-r)} - \frac{\alpha C s}{\delta T} (1-r) e^{-\delta T(1-r)}
\end{align*}\]

Setting \(\frac{d^{\text{ATC(T)}}}{dT} = 0\), we get

\[\begin{align*}
&-\frac{C_0}{T^2} - \frac{\beta iC}{\omega T^2} e^{\omega r(T-t_d)} + \frac{\beta iC}{\omega T^2} e^{\omega r(T-t_d)} - \frac{\beta r iC}{T} e^{\omega r(T-t_d)} - \frac{\alpha iC}{T} + \beta r^2 C e^{\omega r(T-t_d)} - \beta r^3 C T + \frac{\beta C t_d^2}{T^2} e^{\omega T(T-t_d)} \\
+\frac{\alpha iC r}{\omega T^2} e^{\omega r(T-t_d)} + \frac{\alpha iC r}{\omega T} e^{\omega r(T-t_d)} - \frac{\beta t_d iC}{T} e^{\omega r(T-t_d)} + \frac{\beta t_d iC}{T} - \frac{2 T^2 iC}{2 T^2} e^{\omega T(T-t_d)} \\
+\frac{\beta t_d iC}{T} e^{\omega r(T-t_d)} + \frac{\beta C T}{2 T^2} e^{\omega r(T-t_d)} - \frac{\beta C T}{T^2} e^{\omega r(T-t_d)} + \frac{\beta C r}{\omega T} e^{\omega r(T-t_d)} + \beta r^2 d iC e^{\omega r(T-t_d)} \\
-\frac{\beta \omega iCr^2}{\omega T} e^{\omega r(T-t_d)} + \frac{\beta C T}{T^2} e^{\omega r(T-t_d)} - \frac{\alpha C}{\omega T^2} e^{\omega r(T-t_d)} + \frac{\alpha C}{\omega T^2} e^{\omega r(T-t_d)} - \frac{\alpha C}{T} + \frac{\alpha C}{T} \\
-\frac{\alpha C}{T^2} - \frac{\beta r^2 C e^{\omega r(T-t_d)}}{\omega T^2} - \frac{\beta r^3 C T}{\omega T^2} + \frac{\beta C t_d}{\omega T^2} e^{\omega T(T-t_d)} + \frac{\beta C}{\omega T} e^{\omega T(T-t_d)} - \frac{\alpha C s}{\delta T^2} (1-r) e^{-\delta T(1-r)} + \frac{\alpha C s}{\delta T^2} (1-r) e^{-\delta T(1-r)} \\
+\frac{\alpha C s}{\delta T^2} (1-r) e^{-\delta T(1-r)} + \frac{\alpha C s}{\delta T^2} (1-r) e^{-\delta T(1-r)} + \frac{\alpha C s}{\delta T^2} e^{-\delta T(1-r)} + \frac{\alpha C s}{\delta T^2} e^{-\delta T(1-r)} \\
+\frac{\alpha C s}{\delta T^2} e^{-\delta T(1-r)} - \frac{\alpha C s}{\delta T^2} e^{-\delta T(1-r)}
\end{align*}\]

Differentiating (23) with respect to \(T\) gives

\[\begin{align*}
&\frac{d^2 ATC(T)}{dT^2} = 2 C_0 T^2 + \frac{2 \beta C}{T^3} e^{\omega r(T-t_d)} + \frac{2 \beta r iC}{T^3} e^{\omega r(T-t_d)} - \frac{\beta r^2 T^2}{T^3} e^{\omega r(T-t_d)} + \frac{\beta r iC}{T^3} e^{\omega r(T-t_d)} \\
-\frac{\beta r^2 T}{T^3} e^{\omega r(T-t_d)} + \frac{2 \beta iC}{T^3} e^{\omega r(T-t_d)} - \frac{2 \beta iC}{T^3} e^{\omega r(T-t_d)} + \frac{\alpha C r}{T^3} e^{\omega r(T-t_d)} - \frac{\alpha C r}{T^3} e^{\omega r(T-t_d)} \\
+\frac{\alpha C r}{T^3} e^{\omega r(T-t_d)} - \frac{\beta r^2 T}{T^3} e^{\omega r(T-t_d)} + \frac{\beta r^2 T}{T^3} e^{\omega r(T-t_d)} + \frac{2 \beta r^2 T}{T^3} e^{\omega r(T-t_d)} - \frac{2 \beta r^2 T}{T^3} e^{\omega r(T-t_d)} \\
+\frac{\alpha C r}{T^3} e^{\omega r(T-t_d)} - \frac{\beta r^2 T}{T^3} e^{\omega r(T-t_d)} + \frac{\beta r^2 T}{T^3} e^{\omega r(T-t_d)} + \frac{2 \beta r^2 T}{T^3} e^{\omega r(T-t_d)} - \frac{2 \beta r^2 T}{T^3} e^{\omega r(T-t_d)} \\
-\frac{4 \beta T d iC}{T^3} e^{\omega r(T-t_d)} + \frac{2 \beta T d iC}{T^3} e^{\omega r(T-t_d)} + \frac{2 \beta T d iC}{T^3} e^{\omega r(T-t_d)} + \beta T d iC e^{\omega r(T-t_d)} + \frac{2 \beta T d iC}{T^3} e^{\omega r(T-t_d)} \\
-\frac{4 \beta T d iC}{T^3} e^{\omega r(T-t_d)} + \frac{2 \beta T d iC}{T^3} e^{\omega r(T-t_d)} + \frac{2 \beta T d iC}{T^3} e^{\omega r(T-t_d)} + \beta T d iC e^{\omega r(T-t_d)} + \frac{2 \beta T d iC}{T^3} e^{\omega r(T-t_d)}
\end{align*}\]
Since, it is difficult to find the analytical solution of equation (24). We numerically show that equation (24) > 0.

4. Solution procedure

Algorithm

In order to find the optimal solutions, we propose the following algorithm:

Step 1: Input the values of all parameters.
Step 2: Using Newton–Raphson Method determine the value of \(T \) from equation (23).
Step 3: Compare \(T \) with \(t_d \). If \(T > t_d \), go to step 4, otherwise \(T \) is infeasible.
Step 4: Compute the corresponding average total cost \(\text{ATC}(T) \), maximum inventory level \(N \), ordering quantity \(R \), \(t_1 \) from (10), (13) and (20) respectively.

5. Numerical Example
The following data is used to illustrate the model numerically.
\(C_0 = 500 \), \(i = \$0.50 \), \(\mathcal{C} = 18.0 \) units \(\alpha = 20 \) units, \(\beta = 0.2 \), \(t_d = 0.4 \), \(\omega = 0.2 \), \(r = 0.6 \), \(\delta = 0.4/\text{unit} \), \(C_s = 0.04 \), \(C_e = 1 \)
The optimal cycle time \(T^* = 2.4717 \) days using expression (23)
Using the value of \(T^* \) in \(t_1 = rT \) we obtain \(t = t_1^* = 1.4830 \) days
Maximum inventory level \(N^* = 17.7552 \) units are determined using equation (10). The optimum ordering quantity, \(R = R^* = 26.1635 \) units using expression (13).
The corresponding average total cost is \(\$ 220.0690 \) using equation (20).
The sufficient condition is \(\frac{d^2 \text{ATC}(T)}{dT^2} = 406.3906 > 0 \)

6. Sensitivity Analysis
We now study the effect of change in the parameters and observe the change in decision variable. The sensitivity analysis is performed by changing each parameter by -3\% to 3\%, taking one parameter at a time and keeping remaining parameters unchanged.

Table 1: Percentage change in the decision variables with respect to the percentage in parameter values.

<table>
<thead>
<tr>
<th>Variation Parameters</th>
<th>Percentage change in Parameters</th>
<th>Change in decision Variables from -3% to 3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td></td>
<td>(t_1^*) (T^*) (N^*) (R^*) (\text{ATC}(T^*))</td>
</tr>
<tr>
<td>-3</td>
<td>0.7143</td>
<td>0.7143 -1.8738 -0.6270 -0.7313</td>
</tr>
<tr>
<td>-2</td>
<td>0.4748</td>
<td>0.4748 -1.2488 -1.4554 -0.5247</td>
</tr>
<tr>
<td>-1</td>
<td>0.2367</td>
<td>0.2367 -0.6230 -0.7279 -0.3184</td>
</tr>
<tr>
<td>1</td>
<td>-0.2352</td>
<td>-0.2352 0.6309 0.7285 0.0932</td>
</tr>
<tr>
<td>2</td>
<td>-0.4692</td>
<td>-0.4691 1.2590 1.4575 0.2986</td>
</tr>
<tr>
<td>3</td>
<td>-0.7017</td>
<td>-0.7017 1.8879 3.8070 0.5037</td>
</tr>
<tr>
<td>(\beta)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-0.0524</td>
<td>-0.0524 -0.5968 1.1707 -0.0651</td>
</tr>
<tr>
<td>-2</td>
<td>-0.0349</td>
<td>-0.0350 -0.3969 1.3087 -0.0808</td>
</tr>
<tr>
<td>-1</td>
<td>-0.0175</td>
<td>-0.0174 -0.1968 1.4469 -0.0967</td>
</tr>
<tr>
<td>1</td>
<td>0.0175</td>
<td>0.0175 0.2042 1.7238 -0.1282</td>
</tr>
<tr>
<td>2</td>
<td>0.0349</td>
<td>0.0349 0.4050 1.8624 -0.1440</td>
</tr>
<tr>
<td>3</td>
<td>0.0175</td>
<td>0.0175 0.2042 1.7238 -0.1282</td>
</tr>
<tr>
<td>(\omega)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-0.8803</td>
<td>-0.8803 0.0240 1.5879 0.6897</td>
</tr>
<tr>
<td>-2</td>
<td>-0.5829</td>
<td>-0.5829 0.0190 1.5884 0.4171</td>
</tr>
<tr>
<td>-1</td>
<td>-0.2895</td>
<td>-0.2895 0.0122 1.5874 0.1498</td>
</tr>
<tr>
<td>1</td>
<td>0.2857</td>
<td>0.2857 -0.0067 1.5818 -0.3698</td>
</tr>
<tr>
<td>2</td>
<td>0.5677</td>
<td>0.5677 -0.0188 1.5772 -0.6224</td>
</tr>
</tbody>
</table>
8. Conclusion

This paper presents an inventory model which has direct application to the business enterprises that consider constant demand rate in the first part of the cycle, linear time dependent demand rate in the second part of the cycle and during the shortage period demand is exponentially backlogged. This can be seen in situation when new products such as computers, fridge, plasma, satellite, televisions, android mobiles, and so on, are launched in the market. Demand for such items are constant in the early stage and after for some time, the demand increases due to its popularity. There could also be situations in which an economic advantage may be gained by allowing shortages to occur and so exponential backlogged rate was factored. The optimal cycle time and optimal order quantity have been derived by minimizing the total average cost. Then Newton-Raphson has been used to solve the minimization problem so determined. Finally, the result is illustrated with a numerical example which was followed by sensitivity analysis.
References

