AN INVENTORY MODEL FOR NON-INSTANTANEOUS DETERIORATING ITEMS WITH TIME DEPENDENT QUADRATIC DEMAND AND COMPLETE BACKLOGGING UNDER TRADE CREDIT POLICY

by

B. Babangida & Y. M. Baraya

1Department of Mathematics and Computer Sciences, Umaru Musa Yar’adua University, Katsina, Nigeria.
2Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria.
bature.babangida@umyu.edu.ng, mybaraya@hotmail.com

Abstract

In the classical economic order quantity model, it was assumed that the purchaser must pay for the items received immediately. In real practices, the supplier may provide the purchaser a permissible delay of payments so as to settle for the goods supplied. This motivates retailers to order more which in turns lead higher turnover by the supplier. In this paper, an inventory model for non-instantaneous deteriorating items with two-phase demand under trade credit policy and complete backlogging has been considered. The demand rate before deterioration sets in is assumed to be time dependent quadratic function after which it is considered as constant. Shortages are allowed and are completely backlogged. Optimal time with positive inventory, cycle length and order quantity are determined so as to minimise the total variable cost. The necessary and sufficient conditions for the existence and uniqueness of the optimal solutions are provided. Three numerical examples are provided to demonstrate the application of the model for each case. Finally, sensitivity analysis of some model parameters on optimal solutions have been carried out and the implications are discussed. In the discussions, suggestions toward minimizing the total variable cost of the inventory system are also given.

Keywords: Non-instantaneous deteriorating item, Quadratic demand, Trade credit policy, Complete backlogging.

1. Introduction

Since the formulation of economic order quantity (EOQ) model by Harris (1913), several models were developed in the inventory literature by assuming a constant demand rate. But in the real marketing situation, the demand rate of any item may vary with time. Silver and Meal (1969) were the first to modify a simple classical square root formula developed by Harris (1913) for time-varying demand rate. Later, Silver and Meal (1973) developed a heuristic approach to determine EOQ in the general case of a time varying-demand rate. Many researchers such as Dave and Patel (1981), Goyal (1986), Goswami and Chaudhuri (1991), Chang and Dye (1999), Khanra and Chaudhuri (2003), Ghosh and Chaudhuri (2006), Khanra et al. (2011), Sarkar et al. (2012) and Mishra (2016) made their valuable contributions in this direction.

In the conventional EOQ models, it is consider that the retailers should pay for the items as soon as they are received. But in real life practice, a supplier/wholesaler offers the retailer a delay period in paying for purchasing cost, known as trade credit period. Retailer can accumulate revenues by selling items and by earning interests. The concept of trade credit was first introduced by Haley and Higgins (1973). Goyal (1985) was the first to consider the EOQ model under conditions of permissible delay in payments. Several valuable contributions in this field were made in this direction. This include articles developed by
Deb and Chaudhuri (1987) were the first to incorporate shortages in their model by extending the model of Silver (1979). This extension and incorporation of shortages was studied by Dave (1989), Goyal et al. (1992), Goswami and Chaudhuri, (1991), Giri et al. (1996), Teng (1996) and so on. Choudhury et al (2013) developed an inventory model for non-instantaneous deteriorating item with stock dependent demand, time varying holding cost and shortages with complete backlogging.

In this present model, an effort has been made to extend the work of Babangida and Baraya (2018) by allowing shortages which are completely backlogged. The analytical solution of the model is obtained and the solution is illustrated with the help of numerical examples. Finally, sensitivity analysis is carried out to show the effect of changes in some model parameters on decision variables. This is followed by discussions and conclusion.

2. Model Description and Formulation
This section describes the proposed model notation, assumptions and formulation.

2.1 Notation and Assumptions
The inventory system is developed based on the following notation and assumptions.

Notation:
- A: The ordering cost per order.
- C: The purchasing cost per unit per unit time ($/unit/year)$.
- S: The selling price per unit per unit time ($/unit/year)$.
- C_b: Shortage cost per unit per unit of time.
- h: The holding cost (excluding interest charges) per unit per unit time ($/unit/year)$.
- I_c: The interest charged in stock by the supplier per Dollar per year ($/unit/year)$ ($I_c \geq I_e$).
- I_e: The interest earned per Dollar per year ($/unit/year)$.
- M: The trade credit period (in year) for settling accounts.
- θ: The constant deterioration rates function ($0 < \theta < 1$).
- t_d: The length of time in which the product exhibits no deterioration.
- t_i: Length of time in which the inventory has no shortage.
- T: The length of the replenishment cycle time (time unit).
- Q_m: The maximum inventory level.
- B_m: The backorder level during the shortage period.
- Q: The order quantity during the cycle length where $Q = (Q_m + B_m)$.

Assumptions
This model is developed under the following assumptions.
- (i) The replenishment rate is infinite.
- (ii) The lead time is zero.
- (iii) A single non-instantaneous deteriorating item is considered.
- (iv) During the fixed period, t_d, there is no deterioration and at the end of this period, the inventory item deteriorates at the constant rate θ.
- (v) There is no replacement or repair for deteriorated items during the period under consideration.
- (vi) Demand before deterioration begins is quadratic function of time t and is given by
\(\alpha + \beta t + \gamma t^2\) where \(\alpha \geq 0, \beta \neq 0, \gamma \neq 0\).

(vii) Demand after deterioration sets in is assumed to be constant and is given by \(\lambda\).

(viii) During the trade credit period \(M (0 < M < 1)\), the account is not settled; generated sales revenue is deposited in an interest bearing account. At the end of the period, the retailer pays off all units bought, and starts to pay the capital opportunity cost for the items in stock.

(ix) Shortages are allowed and completely backlogged.

2.2 Formulation of the model

The inventory system is developed as follows. There are \(Q_m\) units arrival of a single product from the manufacturer at the beginning of the cycle (i.e., at time \(t = 0\)) arrive. During the time interval \([0, t_d]\), the inventory level \(V_1(t)\) is depleting gradually due to market demand only and it is assumed to be quadratic function of time \(t\). At time interval \([t_d, t_1]\) the inventory level \(V_2(t)\) is depleting due to combined effects of demand from the customers and deterioration and the demand at time is reduced to \(\lambda\), a constant demand. At time \(t = t_1\), the inventory level depletes to zero. Shortages occur at the time \(t = t_1\) and is completely backlogged. The behaviour of the inventory system is described in figures below.

Figure 1: Inventory situation for case \((0 < M \leq t_d)\)

Figure 2: Inventory situation for case \((t_d < M \leq t_1)\)
Based on the above description, during the time interval \([0, T]\), the change of inventory at any time \(t\) is represented by the following differential equations

\[
dV_1(t) = -(\alpha + \beta t + \gamma t^2), \quad 0 \leq t \leq t_d
\]

with boundary conditions \(V_1(0) = Q_m\) and \(V_1(t_d) = Q_d\).

\[
dV_2(t) + \theta V_2(t) = -\lambda, \quad t_d \leq t \leq t_1
\]

with boundary conditions \(V_2(t_1) = 0\) and \(V_2(t_d) = Q_d\).

\[
dV_3(t) = -\lambda, \quad t_1 \leq t \leq T
\]

with condition \(V_3(t_1) = 0\) at \(t = t_1\).

The solution of equations (1), (2) and (3) are

\[
V_1(t) = \frac{\lambda}{\theta} \left(e^{\theta(t_1-t_d)} - 1 \right) + \alpha(t_d - t) + \frac{\beta}{2}(t_d^2 - t^2) + \frac{\gamma}{3}(t_d^3 - t^3), \quad 0 \leq t \leq t_d
\]

(4)

\[
V_2(t) = \frac{\lambda}{\theta} \left(e^{\theta(t_1-t)} - 1 \right), \quad t_d \leq t \leq t_1
\]

(5)

and

\[
V_3(t) = \lambda(t_1 - t)
\]

(6)

The maximum inventory level is obtained at \(t = 0\), and then from equation (4), we have

\[
Q_m = \frac{\lambda}{\theta} \left(e^{\theta(t_1-t_d)} - 1 \right) + \left(\alpha t_d + \beta \frac{t_d^2}{2} + \gamma \frac{t_d^3}{3} \right)
\]

(7)

The value of \(Q_d\) is obtained at \(t = t_d\), and then from equation (5), we have

\[
Q_d = \frac{\lambda}{\theta} \left(e^{\theta(t_1-t_d)} - 1 \right)
\]

(8)

The maximum backordered inventory \(B_m\) is obtained at \(t = T\), and then from equation (6), we have

\[
B_m = \lambda(T - t_1)
\]

(9)

Thus the order size during total time interval \([0, T]\) is

\[
Q = Q_m + B_m = \frac{\lambda}{\theta} \left(e^{\theta(t_1-t_d)} - 1 \right) + \left(\alpha t_d + \beta \frac{t_d^2}{2} + \gamma \frac{t_d^3}{3} \right) + \lambda(T - t_1)
\]

(10)
(i) The total demand during the period \([t_d, t_1]\) is given by
\[
D_M = \int_{t_d}^{t_1} \lambda \, dt
\]
\[
= \lambda (t_1 - t_d)
\] \hspace{1cm} (11)

(ii) The total number of deteriorated items per cycle is given by
\[D_p = Q_d - D_M\]
Substituting \(Q_d\) and \(D_M\) from equations (8) and (11) respectively into \(D_p\), we obtain
\[
D_p = \frac{\lambda}{\theta} \left[e^{\theta(t_1-t_d)} - 1 - \theta(t_1-t_d) \right]
\] \hspace{1cm} (12)

(iii) The deterioration cost is given by
\[
D_c = C \frac{\lambda}{\theta} \left[e^{\theta(t_1-t_d)} - 1 - \theta(t_1-t_d) \right]
\] \hspace{1cm} (13)

(iv) The fixed ordering cost per order is given by
\[C_H = h \left[\int_0^{t_d} V_1(t) \, dt + \int_{t_d}^{t_1} V_2(t) \, dt \right]
\] \hspace{1cm} (14)

Substituting equations (4) and (5) into equation (14), we obtain
\[
C_H = h \left[\frac{\lambda t_d}{\theta} e^{\theta(t_1-t_d)} + \frac{\alpha}{2} t_d^2 + \frac{\beta}{3} t_d^3 + \frac{\gamma}{4} t_d^4 + \frac{\lambda}{\theta^2} e^{\theta(t_1-t_d)} - \frac{\lambda}{\theta} t_d \right]
\] \hspace{1cm} (15)

(vi) The backordered cost per cycle is given by
\[
C_B = C_b \int_{t_1}^{T} -V_2(t) \, dt
\]
\[
= \frac{C_b \lambda}{2} (T - t_1)^2
\] \hspace{1cm} (16)

(vii) The average total cost per unit time for a replenishment cycle (denoted by \(Z(T)\)) is given by
\[
Z(t_1,T) = \begin{cases}
Z_1(t_1,T) & 0 < M \leq t_d \\
Z_2(t_1,T) & t_d < M \leq t_1 \\
Z_3(t_1,T) & M > t_1
\end{cases}
\] \hspace{1cm} (17)

where \(Z_1(t_1,T)\), \(Z_2(t_1,T)\), and \(Z_3(t_1,T)\) are discussed for three different cases follows.

Case 1: \((0 < M \leq t_d)\)

The interest payable
This is the period before deterioration sets in, and payment for goods is settled with the capital opportunity cost rate \(l_c\) for the items in stock. Thus, the interest payable is given below.
\[
l_{p_1} = c l_c \left[\int_M^{t_d} V_1(t) \, dt + \int_{t_d}^{t_1} V_2(t) \, dt \right]
\]
\[
= c l_c \left[\frac{\lambda (t_d - M)}{\theta} \left(e^{\theta(t_1-t_d)} - 1 \right) + \frac{\alpha}{2} (t_d - M)^2 + \frac{\beta}{6} (2t_d + M)(t_d - M)^2 \
+ \frac{\gamma}{12} (3t_d^2 + 2t_dM + M^2)(t_d - M)^2 \
+ \frac{\lambda}{\theta^2} \left(e^{\theta(t_1-t_d)} - 1 - \theta(t_1-t_d) \right) \right]
\] \hspace{1cm} (18)
The interest earned
In this case, the retailer can earn interest on revenue generated from the sales up to the trade credit period M. Although, the retailer has to settle the accounts at period M, for that he has to arrange money at some specified rate of interest in order to get his remaining stocks financed for the period M to t_d. The interest earned is

$$I_{E1} = sI_e \left[\int_0^M (\alpha + \beta t + \gamma t^2)tdt \right]$$

$$= sI_e \left(\frac{M^2}{2} + \beta \frac{M^3}{3} + \gamma \frac{M^4}{4} \right) \quad (19)$$

The average total variable cost per unit time $(0 < M \leq t_d)$ is

$$Z_1(t_1, T) = \frac{1}{T} \{ \text{Ordering cost} + \text{inventory holding cost} + \text{deterioration cost} + \text{backordered cost} + \text{interest payable during the permissible delay period} - \text{interest earned during the cycle} \}$$

$$= \frac{1}{T} \left[A + \frac{\lambda t_a}{\theta} e^{\theta(t_1-t_a)} + \frac{\alpha}{2} t_a^2 + \beta \frac{t_a^3}{3} + \frac{Y}{4} t_a^4 + \frac{\lambda}{\theta^2} \left(e^{\theta(t_1-t_a)} - 1 - \theta t_1 \right) \right. $$

$$\left. + C \frac{\lambda}{\theta} \left(e^{\theta(t_1-t_a)} - 1 - \theta t_1 - t_a \right) + \frac{C_b \lambda}{2} (T - t_1)^2 \right. $$

$$\left. + cI_c \left(\frac{\lambda(t_a - M)}{\theta} \left(e^{\theta(t_1-t_a)} - 1 \right) + \frac{\alpha}{2} (t_a - M)^2 + \frac{\beta}{6} (2t_a + M)(t_a - M)^2 \right. $$

$$\left. + \frac{Y}{12} (3t_a^2 + 2t_a M + M^2)(t_a - M)^2 + \frac{\lambda}{\theta^2} \left(e^{\theta(t_1-t_a)} - 1 - \theta (t_1 - t_a) \right) \right]$$

$$- sI_e \left(\frac{M^2}{2} + \beta \frac{M^3}{3} + \gamma \frac{M^4}{4} \right) \quad (20)$$

Case 2: $(t_d < M \leq t_1)$

The interest payable
This is when the end point of credit period is greater than the period with no deterioration but shorter than or equal to the length of period with positive inventory stock of the items. The interest payable is

$$I_{P2} = cI_c \left[\int_{t_d}^{t_1} V_2(t)dt \right]$$

$$= cI_c \left(\frac{\lambda}{\theta^2} \left(e^{\theta(t_1-M)} - 1 - \theta (t_1 - M) \right) \right) \quad (21)$$

The interest earned
In this case, the retailer can earn interest on revenue generated from the sales up to the trade credit period M. Although, the retailer has to settle the accounts at period M, for that he has to arrange money at some specified rate of interest in order to get his remaining stocks financed for the period M to t_1. The interest earned is

$$I_{E2} = sI_e \left[\int_0^{t_d} (\alpha + \beta t + \gamma t^2)tdt + \int_{t_d}^{M} \lambda tdt \right]$$

$$= sI_e \left(\frac{t_d^2}{2} + \beta \frac{t_d^3}{3} + \gamma \frac{t_d^4}{4} + \frac{\lambda M^2}{2} - \frac{\lambda t_d^2}{2} \right) \quad (22)$$

The average total variable cost per unit time $(t_d < M \leq t_1)$ is
Case 3: \(M > t_1 \)

The interest payable

In this case, the period of delay in payment is greater than period with positive inventory. In this case the retailer pays no interest. Therefore, \(I_{P3} = 0 \).

The interest earned

In this case, the period of delay in payment \((M) \) is greater than period with positive inventory \((t_1)\). In this case the retailer earns interest on the sales revenue up to the permissible delay period and no interest is payable during the period for the item kept in stock. Interest earned for the time period \([0,T]\)

\[
I_{E3} = s I_e \left[\int_0^{t_d} (\alpha + \beta t + \gamma t^2) dt + \int_0^{t_1} (\alpha + \beta t + \gamma t^2) dt + \int_{td}^{t_1} \lambda dt + \int_{t_d}^{t_1} \lambda dt \right]
= s I_e \left[\left(\frac{\alpha t_d^2}{2} + \frac{\beta t_d^3}{3} + \frac{\gamma t_d^4}{4} \right) + (M - t_1) \left(\alpha t_d + \frac{\beta t_d^2}{2} + \frac{\gamma t_d^3}{3} \right) - \frac{\lambda}{2} (t_1 - t_d)^2 \right] + M \lambda (t_1 - t_d)
\]

The average total variable cost per unit time \((M > t_1)\) is

\[
Z_3(t_1, T) = \frac{1}{T} (\text{Ordering cost + inventory holding cost + deterioration cost + backordered cost + interest paid during the permissible delay period} - \text{interest earned during the cycle})
\]

\[
= \frac{1}{T} \left[A + I + \left[\frac{\lambda t_d}{\theta} e^{\theta(t_1-t_d)} + \frac{\alpha}{2} t_d^2 + \frac{\beta}{3} t_d^3 + \frac{\lambda}{\theta^2} (e^{\theta(t_1-t_d)} - 1 - \theta t_1) \right] + C \left[\frac{\lambda}{\theta} (e^{\theta(t_1-t_d)} - 1 - \theta (t_1 - t_p)) + \frac{C h}{\theta} (T - t_1)^2 \right] - s I_e \left[\left(\frac{\alpha t_d^2}{2} + \frac{\beta t_d^3}{3} + \frac{\gamma t_d^4}{4} \right) + (M - t_1) \left(\alpha t_d + \frac{\beta t_d^2}{2} + \frac{\gamma t_d^3}{3} \right) - \frac{\lambda}{2} (t_1 - t_d)^2 \right] + M \lambda (t_1 - t_d) \right]
\]

\[
Z_1(t_1, T) = \frac{\lambda}{T} \left(\frac{1}{2} A_1 t_1^2 - B_1 t_1 + C_1 - C h T t_1 + \frac{C h T^2}{2} \right)
\]
where \(A_1 = [h(t_d \theta + 1) + c_1(1 + \theta(t_d - M))] + CB + C_b \), \(B_1 = [ht_d^2 \theta + C \theta t_d + cl_c(M + \theta(t_d - M)t_d)] \) and \(C_1 = \frac{1}{\lambda} \left[A + h \left(\frac{a}{2} t_d^2 + \frac{\beta}{3} t_d^3 + \frac{\gamma}{4} t_d^4 - \frac{\lambda t_d^3}{2} + \frac{\lambda t_d^2 \theta}{2} \right) + \frac{c_1 2 \lambda t_d^2}{2} \right] \)

\[s_{le} \left(\frac{a t_d^2}{2} + \frac{\beta t_d^3}{3} + \frac{\gamma t_d^4}{4} \right) + cl_c \left(\frac{\alpha}{2} t_d^2 + \frac{\beta t_d^3}{3} + \frac{\gamma t_d^4}{4} \right) \left(t_d - M \right)^2 + \frac{\beta}{6} (2t_d + M)(t_d - M)^2 + \frac{\gamma}{12} (3t_d^2 + 2t_d M + M^2) \left(t_d - M \right)^2 - \frac{2 \lambda t_d^2}{2} + M \lambda t_d + \frac{2 \lambda \theta}{2} \left(t_d - M \right) t_d^2 \right].

Similarly

\[
Z_2(t_1, T) = \frac{\lambda}{T} \left\{ \frac{1}{2} A_2 t_1^2 - B_2 t_1 + C_2 + C_b T t_1 + \frac{C_b T^2}{2} \right\}
\]

where \(A_2 = \left[h(t_d \theta + 1) + cl_c + C \theta + C_b \right] \), \(B_2 = \left[h t_d^2 \theta + C \theta t_d + cl_c M \right] \) and \(C_2 = \frac{1}{\lambda} \left[A + h \left(\frac{a}{2} t_d^2 + \frac{\beta}{3} t_d^3 + \frac{\gamma}{4} t_d^4 - \frac{\lambda t_d^3}{2} + \frac{\lambda t_d^2 \theta}{2} \right) - s_{le} \left(\frac{a t_d^2}{2} + \frac{\beta t_d^3}{3} + \frac{\gamma t_d^4}{4} \right) \right]

and

\[
Z_3(t_1, T) = \frac{\lambda}{T} \left\{ \frac{1}{2} A_3 t_1^2 - B_3 t_1 + C_3 + C_b T t_1 + \frac{C_b T^2}{2} \right\}
\]

where \(A_3 = \left[h(t_d \theta + 1) + s_{le} + C \theta + C_b \right] \), \(B_3 = \left[h t_d^2 \theta + C \theta t_d - s_{le} (M + t_d) \right] - \left(\frac{\alpha t_d^2}{2} + \frac{\beta t_d^3}{3} + \frac{\gamma t_d^4}{4} \right) \) and \(C_3 = \frac{1}{\lambda} \left[A + h \left(\frac{a}{2} t_d^2 + \frac{\beta}{3} t_d^3 + \frac{\gamma}{4} t_d^4 - \frac{\lambda t_d^3}{2} + \frac{\lambda t_d^2 \theta}{2} \right) + \frac{c_1 \lambda t_d^2}{2} \right] - s_{le} \left(\frac{a t_d^2}{2} + \frac{\beta t_d^3}{3} + \frac{\gamma t_d^4}{4} \right) + \left(\alpha t_d^2 + \frac{\beta t_d^3}{2} + \frac{\gamma t_d^4}{4} \right) \left[M - \frac{1}{2} (2M + t_d) T \right].

3. Optimal Decision

In order to find the ordering policies that minimize the total variable cost per unit time, we established the necessary and sufficient conditions. The necessary condition for the total variable cost per unit time \(Z_i(t_1, T) \) to be minimum are \(\frac{\partial Z_i(t_1, T)}{\partial t_1} = 0 \) and \(\frac{\partial Z_i(t_1, T)}{\partial T} = 0 \) for \(i = 1, 2, 3 \). The value of \((t_1, T) \) obtained from \(\frac{\partial Z_i(t_1, T)}{\partial t_1} = 0 \) and \(\frac{\partial Z_i(t_1, T)}{\partial T} = 0 \) and for which the sufficient condition \(\left(\frac{\partial^2 Z_i(t_1, T)}{\partial t_1^2} \right) \left(\frac{\partial^2 Z_i(t_1, T)}{\partial t_1^2} \right)^{-1} \left(\frac{\partial^2 Z_i(t_1, T)}{\partial T^2} \right) \left(\frac{\partial^2 Z_i(t_1, T)}{\partial t_1 \partial T} \right)^2 > 0 \) is satisfied gives a minimum for the total variable cost per unit time \(Z_i(t_1, T) \).

Case 1: \(0 < M \leq t_d \).

The necessary conditions for the average total variable cost in equation (26) to be the minimum are \(\frac{\partial Z_i(t_1, T)}{\partial t_1} = 0 \) and \(\frac{\partial Z_i(t_1, T)}{\partial T} = 0 \), which give

\[
\frac{\partial Z_i(t_1, T)}{\partial t_1} = \frac{\lambda}{T} \left\{ A_1 t_1 - B_1 - C_b T \right\} = 0
\]

which implies

\[
T = \frac{1}{C_b} \left(A_1 t_1 - B_1 \right)
\]

Note that \(A_1 t_1 - B_1 = \left[h(t_d \theta(t_1 - t_d) + t_1) + C \theta (t_1 - t_d) + C_b t_1 + cl_c((t_1 - M) + \theta(t_d - M)(t_1 - t_d)) \right] > 0 \) since \((t_d - M) \geq 0, (t_1 - t_d), (t_1 - M) > 0 \). Similarly
Substituting T from equation (30) into equation (31), we obtain

$$A_1(A_1 - C_b) t_1^2 - 2B_1(A_1 - C_b) t_1 - (2C_b C_1 - B_1^2) = 0$$

Let $\Delta_1 = A_1(A_1 - C_b) t_1^2 - 2B_1(A_1 - C_b) t_1 - (2C_b C_1 - B_1^2)$

Lemma 1. For $0 < M \leq t_d$, we have

(i) If $\Delta_1 \leq 0$, then the solution of $t_1 \in [t_d, \infty)$ (say t_{11}) which satisfies equation (32) not only exists but also is unique.

(ii) If $\Delta_1 > 0$, then the solution of $t_1 \in [t_d, \infty)$ which satisfies equation (32) does not exist.

Proof of (i). From equation (32), we define a new function $F_1(t_1)$ as follows

$$F_1(t_1) = A_1(A_1 - C_b) t_1^2 - 2B_1(A_1 - C_b) t_1 - (2C_b C_1 - B_1^2), \quad t_1 \in [t_d, \infty).$$

Taking the first-order derivative of $F_1(t_1)$ with respect to $t_1 \in [t_d, \infty)$, we have

$$\frac{F_1'(t_1)}{dt_1} = 2(A_1 t_1 - B_1)(A_1 - C_b) > 0$$

Because $(A_1 t_1 - B_1) > 0$ and $(A_1 - C_b) = [h(t_d \theta + 1) + c l_c (1 + \theta (t_d - M) + C \theta] > 0$

Hence we obtain that $F_1(t_1)$ is increasing of t_1 in the interval $[t_d, \infty)$. Moreover, we have

$$\lim_{t_1 \to \infty} F_1(t_1) = \infty$$

and $F_1(t_d) = \Delta_1 \leq 0$

We have $F_1(t_d) \leq 0$. Therefore, by applying intermediate value theorem, there exists a unique t_1 say $t_{11} \in [t_d, \infty)$ such that $F_1(t_{11}) = 0$. Hence t_{11} is the unique solution of equation (32). Thus, the value of t_1 (denoted by t_{11}) can be found from equation (32) and is given by

$$t_{11} = \frac{B_1}{A_1} + \frac{1}{A_1} \sqrt{(2A_1 C_1 - B_1^2) C_b}{(A_1 - C_b)}$$

(34)

Once we obtain t_{11}, then the value of T (denoted by T_1) can be found from equation (30) and is given by

$$T_1 = \frac{1}{C_b} (A_1 t_{11} - B_1)$$

(35)

Equations (34) and (35) give the optimal values of t_{11} and T_1 for the cost function in equation (26) only if B_1 satisfies the inequality given in equation (36)

$$B_1^2 < 2A_1 C_1$$

(36)

Proof of (ii). If $\Delta_1 > 0$, then from equation (33), we have $F_1(t_1) > 0$. Since $F_1(t_1)$ is an increasing function of $t_1 \in [t_d, \infty)$, we have $F_1(t_1) > 0$ for all $t_1 \in [t_d, \infty)$. Thus, we cannot find a value of $t_1 \in [t_d, \infty)$ such that $F_1(t_1) = 0$. This completes the proof.

Theorem 1. When $0 < M \leq t_d$, we have

(i) If $\Delta_1 \leq 0$, then the total variable cost $Z_1(t_1, T)$ is convex and reaches its global minimum at the point (t_{11}, T_1), where (t_{11}, T_1) is the point which satisfies equations (32) and (29).

(ii) If $\Delta_1 > 0$, then the total variable cost $Z_1(t_1, T)$ has a minimum value at the point (t_{11}, T_1)

where $t_{11} = t_d$ and $T_1 = \frac{1}{C_b} (A_1 t_d - B_1)$

Proof of (i). When $\Delta_1 \leq 0$, we see that t_{11} and T_1 are the unique solutions of equations (32) and (29) from Lemma 1(i). Taking the second derivative of $Z_1(t_1, T)$ with respect to t_1 and T, and then finding the values of these functions at the point (t_{11}, T_1), we obtain

$$\frac{\partial^2 Z_1(t_1, T)}{\partial t_1^2} \bigg|_{(t_{11}, T_1)} = \frac{\lambda}{T^2} A_1 > 0$$

496
and (t_{11}', T_1') is the global minimum point of $Z_1(t_1, T)$. Hence the values of t_1 and T in equations (34) and (35) are optimal.

Proof of (ii). When $\Delta_1 > 0$, then we know that $F_1(t_1) > 0$ for all $t_1 \in [t_d, \infty)$. Thus, $\frac{\partial Z_1(t_1, T)}{\partial T} = \frac{F_1(t_1)}{T^2} > 0$ for all $t_1 \in [t_d, \infty)$ which implies $Z_1(t_1, T)$ is an increasing function of T. Thus $Z_1(t_1, T)$ has a minimum value when T is minimum. Therefore, $Z_1(t_1, T)$ has a minimum value at the point (t_{11}', T_1') where $t_{11}' = t_d$ and $T_1' = \frac{1}{C_b}(A_1 t_d - B_1)$. This completes the proof.

Case 2: $(t_d < M \leq t_1)$.

The necessary conditions for the average total variable cost in equation (27) to be the minimum are $\frac{\partial Z_2(t_1, T)}{\partial t_1} = 0$ and $\frac{\partial Z_2(t_1, T)}{\partial T} = 0$, which give

$$\frac{\partial Z_2(t_1, T)}{\partial t_1} = \frac{\lambda}{T} \{A_2 t_1 - B_2 - C_b T\} = 0$$

which implies

$$T = \frac{1}{C_b} (A_2 t_1 - B_2)$$

(39)

Note that $A_2 t_1 - B_2 = [h(t_d \theta + 1) + c T_c (1 + \theta (t_d - M)) + C \theta] > 0$ since $(t_1 - t_d) > 0, (t_1 - M) \geq 0$.

Similarly

$$\frac{\partial Z_2(t_1, T)}{\partial T} = -\frac{\lambda}{T^2} \left\{ \frac{1}{2} A_2 t_1^2 - B_2 t_1 + C_2 - \frac{C_b T^2}{2} \right\} = 0$$

(40)

substituting T from equation (39) in equation (40), we obtain

$$A_2 (A_2 - C_b) t_1^2 - 2B_2 (A_2 - C_b) t_1 - (2 C_b C_2 - B_2^2) = 0$$

(41)

Let $\Delta_2 = A_2 (A_2 - C_b) M^2 - 2B_2 (A_2 - C_b) M - (2 C_b C_2 - B_2^2)

Lemma 2. For $t_d < M \leq t_1$, we have

(i) If $\Delta_2 \leq 0$, then the solution of $t_1 \in [M, \infty)$ (say t_{12}^*) which satisfies equation (41) not only exists but also is unique.

(ii) If $\Delta_2 > 0$, then the solution of $t_1 \in [M, \infty)$ which satisfies equation (41) does not exist.

Proof of (i). From equation (41), we define a new function $F_2(t_1)$ as follows

$$F_2(t_1) = A_2 (A_2 - C_b) t_1^2 - 2B_2 (A_2 - C_b) t_1 - (2 C_b C_2 - B_2^2), \quad t_1 \in [M, \infty).$$

(42)
Taking the first-order derivative of \(F_2(t_1) \) with respect to \(t_1 \in [M, \infty) \), we have
\[
\frac{dF_2(t_1)}{dt_1} = 2(A_2 t_1 - B_2)(A_2 - C_b) > 0
\]
Because \((A_2 t_1 - B_2) > 0 \) and \((A_2 - C_b) = [h(t_d \theta + 1) + cL + c\theta] > 0\)
Hence we obtain that \(F_2(t_1) \) is increasing of \(t_1 \) in the interval \([M, \infty)\). Moreover, we have
\[
\lim_{t_1 \to \infty} F_2(t_1) = \infty \quad \text{and} \quad F_2(M) = \Delta_2 \leq 0
\]
We have \(F_2(M) \leq 0 \). Therefore, by applying intermediate value theorem, there exists a unique \(t_1 \)
say \(t_{12}^* \in [M, \infty) \) such that \(F_2(t_{12}^*) = 0 \). Hence \(t_{12}^* \) is the unique solution of equation (41). Thus, the value of \(t_1 \) (denoted by \(t_{12}^* \)) can be found from equation (41) and is given by
\[
t_{12}^* = \frac{B_2}{A_2} + \frac{1}{A_2} \sqrt{\frac{(2A_2C_2 - B_2^2)C_b}{(A_2 - C_b)}}
\]
(43)
Once we obtain \(t_{12}^* \), then the value of \(T \) (denoted by \(T_2^* \)) can be found from equation (39) and is given by
\[
T_2^* = \frac{1}{C_b}(A_2 t_{12}^* - B_2)
\]
(44)
Equations (43) and (44) give the optimal values of \(t_{12}^* \) and \(T_2^* \) for the cost function in equation (27) only if \(B_2 \) satisfies the inequality given in equation (45)
\[
B_2^2 < 2A_2C_2
\]
(45)
Proof of (ii). If \(\Delta_2 > 0 \), then from equation (42), we have \(F_2(t_1) > 0 \). Since \(F_2(t_1) \) is an increasing function of \(t_1 \in [M, \infty) \), we have \(F_2(t_1) > 0 \) for all \(t_1 \in [M, \infty) \). Thus, we cannot find a value of \(t_1 \in [M, \infty) \) such that \(F_2(t_1) = 0 \). This completes the proof.

Theorem 2. When \(t_d < M \leq t_1 \), we have
(i) If \(\Delta_2 \leq 0 \), then the total variable cost \(Z_2(t_1, T) \) is convex and reaches its global minimum at the point \((t_{12}^*, T_{2}^*)\), where \((t_{12}^*, T_{2}^*)\) is the point which satisfies equations (41) and (38).
(ii) If \(\Delta_2 > 0 \), then the total variable cost \(Z_2(t_1, T) \) has a minimum value at the point \((t_{12}^*, T_{2}^*)\)
where \(t_{12}^* = M \) and \(T_{2}^* = \frac{1}{C_b}(A_2 M - B_2) \)

Proof of (i). When \(\Delta_2 \leq 0 \), we see that \(t_{12}^* \) and \(T_{2}^* \) are the unique solutions of equations (41) and (38) from Lemma 2(i). Taking the second derivative of \(Z_2(t_1, T) \) with respect to \(t_1 \) and \(T \), and then finding the values of these functions at the point \((t_{12}^*, T_{2}^*)\), we obtain
\[
\frac{\partial^2 Z_2(t_1, T)}{\partial t_1^2} \bigg|_{(t_{12}^*, T_{2}^*)} = \frac{\lambda}{T_2^2} A_2 > 0
\]
\[
\frac{\partial^2 Z_2(t_1, T)}{\partial t_1 \partial T} \bigg|_{(t_{12}^*, T_{2}^*)} = \frac{\lambda}{T_2^2} C_b
\]
\[
\frac{\partial^2 Z_2(t_1, T)}{\partial T^2} \bigg|_{(t_{12}^*, T_{2}^*)} = \frac{\lambda}{T_2^2} C_b > 0
\]
and
\[
\left(\frac{\partial^2 Z_2(t_1, T)}{\partial t_1^2} \bigg|_{(t_{12}^*, T_{2}^*)} \right)^2 - \left(\frac{\partial^2 Z_2(t_1, T)}{\partial t_1 \partial T} \bigg|_{(t_{12}^*, T_{2}^*)} \right)^2 = \frac{\lambda^2 C_b}{T_2^2} (A_2 - C_b)
\]
We thus conclude from equation (46) and Lemma 2 that \(Z_2(t_{12}^*, T_2^*) \) is convex and \((t_{12}^*, T_2^*) \) is the global minimum point of \(Z_2(t_1, T) \). Hence the values of \(t_1 \) and \(T \) in equations (43) and (44) are optimal.

Proof of (ii). When \(\Delta_2 > 0 \), then we know that \(F_2(t_1) > 0 \) for all \(t_1 \in [M, \infty) \). Thus, \(\frac{\partial Z_2(t, T)}{\partial T} = \frac{F_2(t_1)}{T^2} > 0 \) for all \(t_1 \in [M, \infty) \) which implies \(Z_2(t_1, T) \) is an increasing function of \(T \). Thus \(Z_2(t_1, T) \) has a minimum value when \(T \) is minimum. Therefore, \(Z_2(t_1, T) \) has a minimum value at the point \((t_{12}^*, T_2^*)\) where \(t_{12}^* = M \) and \(T_2^* = \frac{1}{c_b}(A_2M - B_2) \). This completes the proof.

Case 3: \(M > t_1 \).

The necessary conditions for the average total variable cost in equation (28) to be the minimum are \(\frac{\partial Z_3(t_1, T)}{\partial t_1} = 0 \) and \(\frac{\partial Z_3(t_1, T)}{\partial T} = 0 \), which give

\[
\frac{\partial Z_3(t_1, T)}{\partial t_1} = \frac{\lambda}{T} \{ A_3t_1 - B_3 - C_bT \} = 0
\]

and

\[
T = \frac{1}{C_b} (A_3t_1 - B_3)
\]

Note that

\[
A_3t_1 - B_3 = \left[h(t_d \theta(t_1 - t_d) + t_1) + C\theta(t_1 - t_d) + C_b t_1 + s l_e \left(M + t_d + t_1 \right) - \left(at_d + \beta \frac{t_1^2}{2} + \gamma \frac{t_1^3}{3} \right) \right] > 0 \text{ since } (t_1 - t_d) > 0
\]

Similarly

\[
\frac{\partial Z_3(t_1, T)}{\partial T} = -\frac{\lambda}{T^2} \left(\frac{1}{2} A_3t_1^2 - B_3 t_1 + C_3 - \frac{C_b T^2}{2} \right) = 0
\]

Substituting \(T \) from equation (48) in equation (49), we obtain

\[
A_3(A_3 - C_b)t_1^2 - 2B_3(A_3 - C_b)t_1 - (2C_b C_3 - B_3^2) = 0
\]

Let \(\Delta_{31} = A_3(A_3 - C_b)t_1^2 - 2B_3(A_3 - C_b)t_1 - (2C_b C_3 - B_3^2) \) and \(\Delta_{32} = A_3(A_3 - C_b)M^2 - 2B_3(A_3 - C_b)M - (2C_b C_3 - B_3^2) \)

Lemma 3. For \(M > t_1 \), we have

(i) If \(\Delta_{31} \leq 0 \leq \Delta_{32} \), then the solution of \(t_1 \in [t_d, M] \) (say \(t_{13}^* \)) which satisfies equation (50) not only exists but also is unique.

(ii) If \(\Delta_{32} < 0 \), then the solution of \(t_1 \in [t_d, M] \) which satisfies equation (50) does not exist.

Proof of (i). From equation (50), we define a new function \(F_3(t_1) \) as follows

\[
F_3(t_1) = A_3(A_3 - C_b)t_1^2 - 2B_3(A_3 - C_b)t_1 - (2C_b C_3 - B_3^2), t_1 \in [t_d, M]
\]

Taking the first-order derivative of \(F_3(t_1) \) with respect to \(t_1 \in [t_d, M] \), we have

\[
\frac{dF_3(t_1)}{dt_1} = 2(A_3 - C_b)(A_3 t_1 - B_3) > 0
\]

Because \((A_3 t_1 - B_3) > 0 \) and \((A_3 - C_b) = [h(t_d \theta + 1) + s l_e + C\theta] > 0 \)
Hence we obtain that $F_3(t_1)$ is increasing of t_1 in the interval $[t_d, M]$. Moreover, we have $F_3(t_d) \leq 0$ and $F_3(M) \geq 0$. That is $F_3(t_d) \leq 0 \leq F_3(M)$. Thus, we can find a unique value t_1 say $t_{13}^{*} \in [t_d, M]$ such that $F_3(t_{13}^{*}) = 0$. Hence t_{13}^{*} is the unique solution of equation (50). Thus, the value of t_1 (denoted by t_{13}^{*}) can be found from equation (50) is given by

$$t_{13}^{*} = \frac{B_3}{A_3} + \frac{1}{A_3} \sqrt{\frac{(2A_3 C_3 - B_3^2)C_b}{(A_3 - C_b)}}$$ \hspace{1cm} (52)

Once we obtain t_{13}^{*}, then the value of T (denoted by T_3^{*}) can be found from equation (48) and is given by

$$T_3^{*} = \frac{1}{C_b}(A_3 t_{13}^{*} - B_3)$$ \hspace{1cm} (53)

Equations (52) and (53) give the optimal values of t_{13}^{*} and T_3^{*} for the cost function in equation (28) only if B_3 satisfies the inequality given in equation (54)

$$B_3^2 < 2A_3 C_3$$ \hspace{1cm} (54)

Proof of (ii). If $\Delta_{32} < 0$, $F_3(M) < 0$. Since $F_3(t_1)$ is increasing function of t_1 in the interval $[t_d, M]$ and $M > t_1$ we can get $F_3(t_1) < 0$ for all $t_1 \in [t_d, M]$. This implies that we cannot find a value of $t_1 \in [t_d, M]$ such that $F_3(t_1) = 0$. This completes the proof.

Theorem 3. When $M > t_1$, we have:

(i) If $\Delta_{31} \leq 0 \leq \Delta_{32}$, then the total variable cost $Z_3(t_1, T)$ is convex and reaches its global minimum at the point (t_{13}^{*}, T_3^{*}), where (t_{13}^{*}, T_3^{*}) is the point which satisfies equations (47) and (50).

(ii) If $\Delta_{32} < 0$, then the total variable cost $Z_3(t_1, T)$ has a minimum value at the point (t_{13}^{*}, T_3^{*}) where $t_{13}^{*} = M$ and $T_3^{*} = \frac{1}{C_b}(A_3 M - B_3)$

(iii) If $\Delta_{31} > 0$, then the total variable cost $Z_3(t_1, T)$ has a minimum value at the point (t_{13}^{*}, T_3^{*}) where $t_{13}^{*} = t_d$ and $T_3^{*} = \frac{1}{C_b}(A_3 t_d - B_3)$

Proof of (i). When $\Delta_{32} \leq 0 \leq \Delta_{32}$, we see that t_{13}^{*} and T_3^{*} are the unique solutions of equations (50) and (47) from Lemma 3(i). Taking the second derivative of $Z_3(t_1, T)$ with respect to t_1 and T, and then finding the values of these functions at the point (t_{13}^{*}, T_3^{*}), we obtain

$$\frac{\partial^2 Z_3(t_1, T)}{\partial t_1^2}(t_{13}^{*}, T_3^{*}) = \frac{\lambda}{T_3} A_3 > 0$$

$$\frac{\partial^2 Z_3(t_1, T)}{\partial t_1 \partial T}(t_{13}^{*}, T_3^{*}) = \frac{\lambda}{T_3^2} C_b$$

$$\frac{\partial^2 Z_3(t_1, T)}{\partial T^2}(t_{13}^{*}, T_3^{*}) = \frac{\lambda}{T_3} C_b > 0$$

and

$$\left(\frac{\partial^2 Z_3(t_1, T)}{\partial t_1^2}(t_{13}^{*}, T_3^{*})\right)^2 - \left(\frac{\partial^2 Z_3(t_1, T)}{\partial t_1 \partial T}(t_{13}^{*}, T_3^{*})\right)^2 = \frac{\lambda^2 C_b}{T_3^2}(A_3 - C_b)$$
We thus conclude from equation (55) and Lemma 3 that $Z_3(t_{13}^*, T_{3}^*)$ is convex and (t_{13}^*, T_{3}^*) is the global minimum point of $Z_3(t_1, T)$. Hence the values of t_1 and T in equations (52) and (53) are optimal.

Proof of (ii). When $\Delta_{32} < 0$, then we know that $F_3(M) < 0$. Since $F_3(t_1)$ is an increasing function of t_1 in the interval $[t_d, M]$, we can get $F_3(t_1) < 0$ for all $t_1 \in [t_d, M]$. This implies that
\[
\frac{\partial Z_3(t_v, T)}{\partial T} = \frac{F_3(t_1)}{T^2}, \quad \text{for all } t_1 \in [t_d, M].
\]
So, $Z_3(t_1, T)$ is a decreasing function of T in the interval $[t_d, M]$. Thus $Z_3(t_1, T)$ has a minimum value at (t_{13}^*, T_{3}^*) where $t_{13}^* = M$ and the corresponding minimum value of T_{3}^* is $T_{3}^* = \frac{1}{c_b}(A_3M - B_3)$.

Proof of (iii). When $\Delta_{31} > 0$, $F_3(t_d) > 0$, then we can get $F_3(t_1) > 0$ for all $t_1 \in [t_d, M]$, which implies
\[
\frac{\partial Z_3(t_v, T)}{\partial T} = \frac{F_3(t_1)}{T^2} > 0, \quad \text{for all } t_1 \in [t_d, M].
\]
So, $Z_3(t_1, T)$ is an increasing function of T in the interval $[t_d, M]$. Thus $Z_3(t_1, T)$ has a minimum value at (t_{13}^*, T_{3}^*) where $t_{13}^* = t_d$ and the corresponding minimum value of T_{3}^* is $T_{3}^* = \frac{1}{c_b}(A_3t_d - B_3)$.

Thus, the EOQ corresponding to the optimal cycle length T^* will be computed as follows:

EOQ $^* = \text{Total demand before deterioration set in + total demand after deterioration set + } \text{in+total number of deteriorated items + total number of items backordered}
\[
\begin{align*}
\text{EOQ}^* &= \int_0^{t_d} (\alpha + \beta t + \gamma t^2)dt + \int_{t_d}^{t_1^*} \lambda dt + \left[\frac{\lambda}{\theta}(e^{\theta(t_1^*-t_d)} - 1) - \lambda(t_1^* - t_d)\right] + \lambda(T^* - t_1^*) \\
&= at_d + \beta \frac{t_d^2}{2} + \gamma \frac{t_d^3}{3} + \frac{\lambda}{\theta}(e^{\theta(t_1^*-t_d)} - 1) + \lambda(T^* - t_1^*)
\end{align*}
\]

4. **Numerical Examples**

This section will provide some numerical examples to illustrate the application of the proposed model by considering the following numerical examples.

Example 4.1 for (Case 1)

Consider an inventory system with the following input parameters: $A = $300/order, $C = $50/unit/year, $S = $60/unit/year, $h = $10/unit/year, $C_b = $30/unit/year, $\theta = 0.01$ units/year, $\alpha = 1000$ units, $\beta = 200$ units, $\gamma = 20$ units, $\lambda = 500$ units, $t_d = 0.2026$ year (74 days), $M = 0.0548$ year (20 days), $I_c = 0.12$, $I_e = 0.08$. Here we find that $M \leq t_d$. We first check the conditions $\Delta_1 = -24.6490 < 0$ and $B_1^2 = 0.1901$, $2A_1C_1 = 82.9575$ hence $B_1^2 < 2A_1C_1$.

Substituting the above values in equations (44), (45), (35) and (68), we obtain as follows the values of the optimal length of time with positive inventory $t_{11}^* = 0.2728$ year (100 days), the optimal cycle length $T_{1}^* = 0.4085$ year (149 days), the optimal average total cost $Z_1(T_{1}^*, t_{11}^*) = 2036.4518$ per year, and the economic order quantity $EOQ_1^* = 309.7469$ units per year respectively.

Example 4.2 for (Case 2)

The data are same as in Example 4.1 except that $M = 0.2333$ year (85 days). Here we find that $M > t_d$. We first check the conditions $\Delta_2 = -12.8615 < 0$ and $B_2^2 = 2.2656$, $2A_2C_2 = 70.3302$ hence $B_2^2 < 2A_2C_2$. Substituting the above values in equations (54), (55), (36) and (68), we obtain as follows the values of the optimal length of time with positive inventory $t_{12}^* = 0.2713$ year (99 days), the optimal cycle length $T_{2}^* = 0.3706$ year (135 days), the
optimal average total cost $Z_2(T^*_2, t^*_2) = $1488.7090 per year, and the economic order quantity $EOQ^*_2 = 290.7660$ units per year respectively.

Example 4.3 for (Case 3)
The data are same as in Example 4.1 except that $t_d = 0.1545$ year (56 days) $M = 0.2608$ year (95 days). Here we find that $M > t_d$. We first check the conditions that $\Delta_{31} = -9.6204 < 0$ and $\Delta_{32} = 22.3451 > 0$, hence $\Delta_{31} \leq 0 \leq \Delta_{32}$ and $B_3^2 = 0.1660$, $2A_3C_3 = 42.7192$ hence $B_3^2 < 2A_3C_3$. Substituting the above values in equations (64), (65), (37) and (68), we obtain as follows the values of the optimal length of time with positive inventory year (70 days), the optimal cycle length year (111 days), the optimal average total cost per year, and the economic order quantity $EOQ^*_3 = 231.8288$ units per year respectively.

5. **Sensitivity Analysis**
The sensitivity analysis associated with different parameters is performed by changing each of the parameters from -30%, -20%, -10%, $+10\%$, $+20\%$ to $+30\%$ taking one parameter at a time and keeping the remaining parameters unchanged. The effects of these system parameter values on optimal length of time with positive inventory, cycle length, total variable cost and the order quantity per cycle are discussed.

Table 1: Percentage change in the decision variables with respect to the percentage change in parameters from -30%, -20%, -10%, $+10\%$, $+20\%$ to $+30\%$ for examples 4.1, 4.2 & 4.3.
6. Results and Discussion

(i) Based on the computational results shown in Table 1, the following managerial insights are obtained. As the rate of deterioration \((\theta) \) increases, the optimal time with positive inventory \((t_1^*)\), cycle length \((T^*)\) and economic order quantity \((EOQ^*)\) decrease while total variable cost \((Z(T^*,t_1^*))\) increase. Hence the retailer will order less quantity to avoid the items being deteriorating when the deterioration rate increases.

(ii) As the unit purchasing cost \((C)\) increases, the optimal time with positive inventory \((t_1^*)\), cycle length \((T^*)\) and the economic order quantity \((EOQ^*)\) decrease while the total variable cost \((Z(T^*,t_1^*))\) increase. In real market situation the higher the cost of an item, the higher the total variable cost. This result implies that the retailer will order a smaller quantity to enjoy the benefits of permissible delay in payments more frequently in the presence of an increased unit purchasing price and consequently shortening optimal time with positive inventory and cycle length.
(iii) As the unit selling price \((S)\) increases, the optimal time with positive inventory \((t_1^*)\), cycle length \((T^*)\), the economic order quantity \((EOQ^*)\) and the total variable cost \((Z(T^*, t_1^*))\) decrease. In real market situation the higher the selling price of an item, the lower the demand of that item and vice versa. This means that when the unit selling price is increasing, the retailer will order less quantity to take the benefits of the trade credit more frequently.

(iv) As the interest payable \((I_c)\) increases, the optimal time with positive inventory \((t_1^*)\), cycle length \((T^*)\) and the economic order quantity \((EOQ^*)\) decrease while the total variable cost \((Z(T^*, t_1^*))\) increase when interest payable is high for both case 1&2. This means that when interest payable is high the retailer should order less amount of items. As for case 3, the increase/decrease in interest payable \((I_c)\) do not affect the optimal time with positive inventory \((t_1^*)\), cycle length \((T^*)\), economic order quantity \((EOQ^*)\) and total variable cost \((Z(T^*, t_1^*))\). This is because the interest payable in this case is zero.

(v) As the interest earn \((I_e)\) increases, the optimal time with positive inventory \((t_1^*)\), cycle length \((T^*)\), economic order quantity \((EOQ^*)\) and total variable cost \((Z(T^*, t_1^*))\) decrease. This implies that when the interest earned is high, the optimal time with positive inventory \((t_1^*)\), cycle length, the economic order quantity and the total variable cost are low. Hence the retailer should order less items so as to effectively take the benefit of trade credit more frequently.

(vi) An increase in the shortage cost will lead to an increase in the optimal time with positive inventory \((t_1^*)\) and total variable cost \((Z(T^*, t_1^*))\), decrease in cycle length \((T^*)\), and the economic order quantity \((EOQ^*)\). This means that when the shortages cost increase, the number of backordered items reduce drastically which in turn lead to the decrease of order quantity.

7. Conclusion

In this paper, we develop an economic order quantity model for non-instantaneous deteriorating items with time dependent quadratic demand function of time and complete backlogging under trade credit policy. The optimal time with positive inventory, cycle length and economic order quantity that minimise total variable cost are determined. Some numerical examples are presented to illustrate the application of the model. Sensitivity analysis is also carried out to show the effect of changes in system parameters on decision variables. The results show that the retailer can reduce total variable cost by ordering less to shorten the time with positive inventory and cycle length when deterioration sets in, unit purchasing price increases, unit selling price increases, interest charges increases, shortage cost increases and interest earn decreases respectively.

The model developed in this paper is an extension of Babangida and Baraya (2018) by allowing shortages which are completely backlogged. The proposed model can be extended to allow for partial backlogging, variable deterioration rate, quantity discounts, inflation rates, finite time horizon and so on.
References

time dependent quadratic demand under permissible delay in payment. *Computers & Operations
Research, 218*, 1–9.

Min J., Zhou, Y. W. and Zhao, J. (2010). An inventory model for deteriorating items under stock-

Sana, S. S. and Chaudhuri, K. S. (2008). A deterministic EOQ model with delays in payments and

Sarkar, B. (2012a). An EOQ model with delay in payment and stock dependent demand in the present

Sarkar, B. (2013). A production-inventory model with probabilistic deterioration in two echelon

a deteriorating item with time-quadratic demand and time-dependent partial backlogging with

Journal of the Operational Research Society, 30, 71–75.

demand rate. *Production of Inventory Management, 10*, 52–65.

deterministic time-varying demand rate and discrete opportunities for replenishment. *Production
of Inventory Management, 14*, 64–74.