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Abstract 
The stability analysis and synthesis of stochastic oscillator systems described by perturbed Duffing 

equation is studied in this paper. The Lyapunov stability is a tool for the study of dynamical 

behaviours (stability) of nonlinear systems. The results show the points where the system is Lyapunov 

stable and where the point is asymptotically stable. This stability analysis is used to checkmate the 

volatility of the stock and their prices (fluctuations). We recommend the use of other methods of 

stability to study the market model. These methods can also be compared with each other to see the 

best method. 

Keywords: stability analysis, asymptotic stability, perturbed Duffing equation, Lyapunov stability, 

asymptotic stability dynamical behaviours. 
 

INTRODUCTION  

The Stability analysis of nonlinear systems has been uninterruptedly investigated in many 

fields by so many researchers such as in control theory and engineering (see for instance 

Khalil and Grizzle (2002) and their references). Stability of stochastic equations (SDE) was 

investigated by literatures in stochastic stability in probability almost sure stability, etc. (see 

for example Kozin (1969)). 

For deterministic and stochastic systems, several articles have developed different 

methods to address the stability issue. The Lyapunov’s stability methods have been 

successfully applied for long years by engineers and scientists (Slotine and Li 1991, Khalil, 

1992). Once the Lyapunov function is obtained for the system of interest, the next practical 

issue becomes the region of attraction. In order to do this, some computational approaches, 

such as, geometrical, numerical methods etc. have been applied. For previous works have 

been proposed for the construction of Lyapunov functions based on conventional methods 

(Golub et al, 1979), numerical methods (Zhaolu and Chuanqing 2008, Sorensen and Zhou 

2003) and artificial intelligent methods (Grosman and Lewin ,2008, Banks). 

The Hessian term that exists in the Itô formula is difficult to interpret physically and 

is hard to handle for stability analysis. There is also a difficulty in the selection between two 

well-known descriptions of SDE, an Itô integral equation and a Stratonovich integral 

equation for a specific application. Moreover since a white noise is unbounded, it fails to 

describe the model of some applications; therefore, other stochastic processes such as a 

stationary process are required. Because of these limitations and difficulties, SDE model is 

not accurate enough to model all application that contains a stochastic disturbance (Sanjari 

and Tahmasebi). To address the above problem, nonlinear random models have been 

required to alleviate the problems mentioned above (Wu, 2015). Moreover, nonlinear random 

model enable some deterministic analysis tools to be applied (Jiao et al, 2015). 
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Stability results of nonlinear random differential equation (RDE) have been presented in 

(Bertram and Sarachik, 1959), but some restrictive assumptions and constrains confine the 

extension of RDE to the range of applications dealing with a stochastic disturbance. 

However, recently, (Wu, 2015) constructs a general framework to address the stability 

criteria of nonlinear RDE and presents theorems employing mild assumptions that conclude 

the stability of RDE based on a Lyapunov approach, which renders extending the 

applications that nonlinear RDE, especially in the control theory (Jiao et al, 2016, Xia, et al, 

2015). However, to the best of the authors’ knowledge no work on stability analysis and 

synthesis of stochastic oscillator system described by perturbed doffing equation especially 

in Mathematical Finance has been done until now. 

However, the rest of this paper is organised as follows; section II presents problem 

statement and system description and section III Lyapunov methods, IV, gives example using 

the model of study, section V, Results and Conclusion. 
 

II. PROBLEM STATEMENT AND SYSTEM DESCRIPTION 

The volatility of stock and their prices (fluctuations) are stochastic in nature. They 

are modelled with stochastic oscillators and also are described by perturbed Duffing 

equation. The stability analysis and synthesis of stochastic oscillators are then required to 

checkmate the fluctuations in the market. 

SDE’s have been proven to be an appropriate model to fit the data in many 

applications, but in some situation, they provide inappropriate model to describe systems that 

contain stochastic disturbance and therefore suffer some disadvantages (Wu, 2015). For 

example white noise is driven Wiener process which does not have derivative anywhere, so it 

is unsuitable to model Fluctuation in practical applications. 

SDE’s have been proven to be an appropriate model to fit the data in many 

applications, but in some situation, they provide inappropriate model to describe systems that 

contain stochastic disturbance and therefore suffer some disadvantages (Wu, 2015). For 

example white noise is driven Wiener process which does not have derivative anywhere, so it 

is unsuitable to model Fluctuation in practical applications. 

Consider the following nonlinear random system (Osu et al ,2019); 

 ̈(   )    ̇                       (   )   ( ) ( )          (1.1) 

Where      is the state vector,           -adapted and piecewise continuous stochastic 

process, (   )           is a known nonlinear function and  (   )         
     is an envelope function. 

The following assumptions were made; 

Assumption 1; The Stochastic process  ( ) is   -adapted, piecewise continuous such that 

there exists a positive constant k satisfying 

        *| ( )|
 +    

It means that the mean-square of the stochastic process ( ) is bounded by a constant. 

Assumption II; The solution ( ) of eq(1.1) is   -adapted and satisfies all   ,    - 

 ( )   (  )  ∫  (   )  
 

  

 ∫  (   ) ( )  
 

  

 

Assumption III; Nonlinear functions   ( ) ( ) vanish at the origin, i.e.  (   )   (   )  
  for all   ,    -  
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III. LYAPUNOV METHODS 

The Lyapunov theory of dynamic systems is the most useful general theory for studying the 

stability of nonlinear systems. It includes two methods; (i) Lyapunov’s indirect (reduced) 

method and (ii) Lyapunov’s direct method. 

i) Lyapunov’s indirect (reduced) method or First Lyapunov criterion 

 Lyapunov’s Indirect method states that the dynamical system 

 ̇   ( ) 
Where  ( )     has a locally exponentially stable equilibrium point at the origin if and only 

if the real parts of the eigenvalues 0f the Jacobian matrix of   at zero are all strickly negative. 

Considering the autonomous system above, the Jacobian at the equilibrium point can can be 

defined as:  

  
  ( )

  
      

For Lyapunov’s Indirect method,  

 If all eigenvalues of A are strictly in the left-half complex plane (negative real part), 

then the asymptotic of the linearized system is concluded. 

 If at least one eigenvalue of A is strictly in right-half complex plane (positive real part), 

then the instability of the linearized system is concluded. 

 If all eigenvalues of A are in the left-hand complex plane but at least one of them is on 

the jw-axis or imaginary part, then the linearized system is said to be marginally stable 

but one cannot conclude anything about the stability of the nonlinear system from the 

linear approximation. (Panikhom and Sujitjiorn 2010} 

In the indirect method, the quadratic Lyapunov function can be generally applied. It can be 

expressed as; 

 ( )         

Where   is the state vector and  is a symmetrically scalar matrix. The following equations 

must be satisfied: 
 ̇     

 ̇       

 ̇( )      ̇   ̇    

 ̇( )               

 ̇( )    (      )  

 ̇( )       

 Where          and      

Finding the Lyapunov function of eqn (1.1). 

 ̈(   )    ̇                       (   )   ( ) ( )  
With the third assumption above and     eqn (1.1) becomes: 

 ̈(   )    ̇                
With linearization the last equation becomes; 

 ̇     ̇                    
  

In matrix form is  



4 
 

[
 ̇ 
 ̇ 
]  [

  
             

] [
  
  
] 

At the origin,   , and ,    -  ,  -, the matrix above becomes;  

[
 ̇ 
 ̇ 
]  [

  
      

] [
  
  
] 

Now,   [
  

      
] 

And choose,  [
   
   

], a symmetric matrix. 

Checking the definiteness of   by 

     ,    - [
   
   

] [
  
  
]    

  (     )
  

The last equation shows that   is positive definite. So  
 ( )         

Then find the value of          as 

  [
   
   

] [
  

      
]  [

     
   

] [
   
   

] 

  [
           

            
] 

 ̇( )       ,    - [
           

            
] [
  
  
]  ̇( )

       
   (       )         

  ̇( )
   (       

   (        )         
 ) 

Let’s choose the values of the scalar variables in the equation to be as follows;       
           
Then substituting in the last equation becomes: 

 ̇( )    (    
           

 ) 
The last equation shows the derivative of  ( ) is negative definite in the chosen values of 

the scalar variables and so the system is asymptotically stable at that point.  

ii) Lyapunov’s direct method or second Lyapunov criterion 

Lyapunov’s direct method is a mathematical extension of fundamental physical observation 

that an energy dissipative system must eventually settle down to an equilibrium point. 

Lyapunov’s direct method states that if there is an energy-like function V of  

 ̇   ( ) 
that is strictly decreasing along its trajectories, then the equilibrium at the origin is 

asymptotically stable. The function V is said to be a Lyapunov function for the system. A 

Lyapunov function provides via its pre-images a lover-bound of the region of attraction of 

the equilibrium. This bound is non-conservative in the sense that it extends to the boundary 

of the domain of the Lyapunov function. (Törner andFreiling, 2002). 

A nonlinear system can be represented by  ̇   (   ) for a non- autonomous one, and 

 ̇   ( ) for an autonomous system. At equilibrium,       the following condition 

holds (  )    and  ̇     
For the Lyapunov’s direct method, the stability analysis of an equilibrium point   is done 

using proper scalar functions called Lyapunov functions defined in the state space. The 
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second Lyapunov function  ( ) must be found and used to conclude the stability region of 

the system for a nonlinear system without knowing the solution of the governing equations of 

the system.  ( )most be scalar, positive definite and differentiable. 

For a nonlinear system to have a globally asymptotically stable equilibrium, the Lyapunov 

function  ( ) must have the following properties; 

  ( )    

  ̇( )    

  ( )    as ‖ ‖     

Consider the Duffing equation in eqn (1.1) if the quadratic nonlinear term is perturbed 

instead of the cubic and    , the equation becomes; 

 ̈(   )    ̇              
The energy function used as the Lyapunov function candidate is  

 ( )  
 

 
( ̇        

 

 
    ) 

It can be seen that  ( ) is scalar, differentiable, positive definite and unbounded. If  ( ) 
satisfies all the properties, it is said to be the Lyapunov function of the system OF eqn (1.1). 

 ̇( )   ̇(   ̇| ̇|)    | ̇ |   
the derivative of the Lyapunov function  ( )  is negative definite, then the global asymptotic 

stability of the system is concluded. 
 

Computing the equilibrium points and checking their stability 
Consider the equation: 

 ̈(   )    ̇                       (   )   ( ) ( )  
With the conditions stated earlier, the unperturbed system becomes 

 ̈(   )     ̇              

The equivalent system of the above unperturbed system is 

 ̇     ̇                    
  

The equilibrium points of the system are; 

 ̇   ̇   , i.e. (0, 0) 

                 
    

             
     

Since        

     
    √(    ) 

     
,         

 

   
 

So the system has only two equilibrium points; (0, 0) and (
 

   
, 0) 

Let 

 ̇       (     ) 
 ̇                    

    (     ) 
The Jacobian matrix, 

 (     )  [
  

             
] 

With    , the system has centres at (     )  (   )    (
 

  
  ) 
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Examining the stability using eigenvalues approach 

|    |  |
    

               
|    

                   

   
   √      (      )

 
 

   
   √      (      )

 
 

Now, the values of   for which the system achieves stability is specified. 

For         
   √       

 
 

    , if,                    , the real line  

    if    ,    and                    

    , if     and √          

       , complex numbers if         

For     
 

   
    

   √       

 
 

    , if,                   , the real line 

    if   ,and                  

    , if     and √          

       , complex numbers if    ,     and         

For         
   √       

 
 

    , if,                    

    , if,     and √          

    , if     and √          

       , complex numbers if         

For     
 

   
    

   √       

 
 

    , if,                    

    , if,         √          

    , if     and √          

       , complex numbers, if,   ,     and         

Since the system          is nonlinear, with continuous first derivative and  ̅  is a critical 

point of the nonlinear system     ( ) 
1) If all eigenvalues of the Jacobian matrix  ( ̅ ) have negative real parts, then the critical 

point  ̅  is asymptotically stable. 

2) If any eigenvalue of the Jacobian matrix  ( ̅ ) has positive real part or zero, then the 

critical point  ̅  is unstable[Ledder,2005]. 

Analysis 
The interest is on the eigenvalues of the Jacobian matrix that have negative real parts for 

which the critical points  ̅  is asymptotically stable. They are, 

[A] For         
   √       

 
 

, - )     , if     and √          

⇒       , since      then     and     
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Since   is the natural frequency of the system, it will always be positive and so     , q 

being the extent of resistance to the deformation in response to the external force that causes 

the push or pull in the market shows resistance and then keeps the market prices stable.   the 

economic damping due to speculations is kept in check since        . 

[A]ii)        , complex numbers if         and     

Since        , it implies like in [A]i) that the extent of economic damping due to 

speculations is also kept in check and so the stability of the market prices hold. 

[B] For     
 

   
    

   √       

 
 

[B]i)     , if     and √          

⇒         

From the last equation, since    , then    . It means that with the state vector as 
 

   
  

there is damping due to the speculations and negative resistance to the deformation in 

response to the external force that causes the push or pull in the market shows resistance and 

so stability cannot be achieved. 

[B]ii)        , complex numbers if    ,    ,         and     

With    and    , then        is undefined. 

[C]For         
   √       

 
 

[C]i)     , if     and √          

This gives the same result as [B]i). 

[C]ii)        , complex numbers if        and     

The result here is the same as that of [A]i) 

[D] For     
 

   
    

   √       

 
 

[D]i)     , if     and √          

It gives the same result as [B]i) 

[D]ii)        , complex numbers, if,    ,    ,         and     

This holds the same result as [A]i) and [A]ii). 
 

Summary 

The summary of the only eigenvalues,   ’s and the state vector    the achieved stability are 

as follows; 

i) For         
   √       

 
 

    and        

ii) For         
   √       

 
 

        

iii) For     
 

   
    

   √       
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Synthesis of the Stochastic Oscillator system described by perturbed Duffing Equation 

The Lyapunov exponent and the eigenvalues of the Jacobian matrix are used to perform the 

synthesis. The Lyapunov exponent is used to test the convergence of the nearby trajectories 

while the eigenvalues are used with the same parameter values as in the Lyapunov exponent 

to test the stability of the system. The values of the parameters for which convergence is 

achieved using the Lyapunov exponent, 

  ( )  
      ( ) 

 
 
      ( ) 

 
 
      ( )  

 
 
      ( )  

 

 
    (  )(  

    (  )
 

                   

 
 

   ( )  
       ( ) 

 
 
      ( ) 

 
 
      ( )  

 
 
      ( )  

 

 
    (  )(  

    (  )
 

                   

 
 

are; 

                                                             

With the above values of the parameters,   and   , are negative for all values of         

except where u is zero. Here    and   , are positive showing non-convergence. 

Now using the eigenvalues and the same parameters of the Lyapunov exponent   
                      

For     
 

   
    

   √       

 
 

          , with the above parameter values. 

Since    of the Jacobian matrix  (  ) has negative real part, then the critical point    is 

asymptotically stable. 
 

Conclusion: 

This paper has demonstrated the stability analysis of the market price fluctuations using the 

Lyapunov’s direct and indirect methods. The derivative of the Lyapunov’s function was 

excited parametrically and it was found that with some values, the derivative achieved 

negative definiteness which shows complete asymptotic stability. The Lyapunov exponent 

and the eigenvalues of the Jacobian matrix are used to perform the synthesis. 
 

Recommendation; 

We recommend the use of other methods of stability to study the market model. These 

methods can also be compared with each other to see the best method. 

 

References 
Banks, C. Searching for Lyapunov functions using genetic programming,  

http://www.aerojockey.com/files/lyapunovgp.pdf. 

Bertram, J. and Sarachik, P. Stability of Circuits with randomly time-varying parameters, Information  

theory, IRE Transactions on, vol. 5, pp. 260-270, 1959. 

Golub, G.H.,  Heath, M and  Wahba, G. Generalized Cross-Validation as a Method for Choosing a  

Good Ridge Parameter, Technometrics 21(2):215-223, 1979. 

Grosman, B. and Lewin, D. R. Lyapunov-based stability analysis automated by generic  

http://www.aerojockey.com/files/lyapunovgp.pdf
https://www.tandfonline.com/author/Heath%2C+Michael
https://www.tandfonline.com/author/Wahba%2C+Grace


9 
 

programming,Automatica, 45, pp. 252-256, December 2008. 

Jiao, T., Xu, S., Li, Y. and Li, Z. Adaptive stabilization of random systems with arbitrary switchings,  

Control Theory & Applications, IET, vol. 9, pp. 2634-2640, 2015. 

Jiao, T., Lu, J., Li, Y., Chu, Y. and Xu, S. Stability analysis of random systems with Markovian  

Switching and its applications, Journal of Franklin Institute, vol. 353, pp. 200-220, 2016. 

Khalil, H. K. Nonlinear systems, New York: MacMillan, 1992. 

Khalil, H. K. and Grizzle, J. Nonlinear systems,vol. 3; Prentice hall Upper Saddle River 2002. 

Khasminskii, R. Stochastic stability of differential equations,vol. 66: Springer, 2011   

Kozin, F. A survey of stability of stochastic systems, Automatica, vol. 5, pp. 95-112, 1969. 

Ledder, G. Differential Equations: A Model Approach.The McGraw Hill Companies, QA371.1.353  

pp. 404 2005. 

Osu, B. O, Eze, E. O and Ujumadu, R. N. Approximate Solution of Cubic Nonlinear Stochastic  

Oscillators Under Parametric Excitations. International Journal of Advances in Mathematics, 

2, 31-41, 2019. 
Panikhom, S. and Sujitjorn, S. Numerical approach to Lyapunov’s stability analysis of nonlinear  

systems using threshold accepting algorithms. Latest trends on circuits, systems and signals, 

ISSN 1792-4324, ISBN: 978-960-474-208-0, April 2, 2010. 

Sanjari, S. and Tahmasebi, M. Finite-time stability analysis for random nonlinear systems. 

Slotine, J.J.E. and Li, W. Applied nonlinear control system. Practice Hall Inc., Englewood 

Cliffs. 1991. 

Sorensen, D. C. and Zhou, Y. Direct method for Matrix Sylvester and Lyapuvov equations, Journal of  

Applied Mathematics, 2, pp. 277-303, 2003. 

Törner, G. and Freiling, G. Stability analysis of nonlinear system swith linear programming (A  

Lyapunov function based-approach), Tagder Mundlichen: 4
th
 February 2002. 

Wu, Z. Stability criteria of random nonlinear systems and their applications, Automatic control, IEEE  

Transactions on, vol. 60, pp. 1038-1049, 2015. 

Xia, Y., Zhang, H. and Wu, Z. Noise to state stability of random switched systems and its applications,  

IEEE Transactions on Automatic control, vol.61 pp. 1-1, 2015. 

Zhaolu, T. and Chuanqing, G. A numerical algorithm for Lyapunov equations, Applied Mathematics  

and Computation.202, pp. 44-53, 2008. 

 

 

  



10 
 

 


