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Abstract 
Boolean functions are the building blocks of symmetric cryptographic algorithms. Symmetrical 

cryptographic algorithms are fundamental tools in the design of all types of digital security systems. 

Cryptographic applications of Boolean functions are meant to have some cryptographic properties, 

those properties are built to thwart cryptanalysis of certain kinds, and multiple crypto-graphic 

properties are usually required for a Boolean function to be used in cryptographic algorithm design, 

expected to resist some known attacks. Nonlinear Boolean functions are considered for a long time to 

construct symmetric cryptosystems. In order to resist the known attacks, many properties of Boolean 

functions must be utilized. In this paper we analyse some major properties according to different 

attacks. Therefore, the primary applications of cryptographic Boolean functions are the design of 

cryptographic algorithms, particularly stream cipher and block cipher algorithms. We discussed some 

applications of Boolean functions with cryptographic properties, where the involved Boolean 

functions are primary building blocks. 
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1.   Introduction 

Cryptography, originally from the Greek words 'kryptos = to hide' and 'graphein = to write' is 

the combination of all processes aimed at denying an intruder called an adversary, to make 

meaning of a message sent through an unsecure channel. Prior to the modern age, it was 

synonymous with encryption, the conversion of information from a readable state to apparent 

nonsense. Encryption does not itself prevent interference, but denies the intelligible content 

to the adversary. Plaintext messages ( ) are encrypted into unintelligible content called 

ciphertext ( )using an encryption key (  ). The original message ( ) is recovered back 

through a process called decryption using a decryption key(  ).  [18]. 
  ( ) =  ;  and    =   ( ) (1) 

Cryptography could be symmetric or asymmetric. With symmetric cryptography, two 

separate keys are used for encryption and decryption       (Fig. 1a), example of which 

includes the commonly used AES (Advanced Encryption Standard) which replaced the older 

DES (Data Encryption Standard). In an event where both encryption and decryption are done 

with a single key        then we have what is called a asymmetric cryptography (Fig. 

1b), e.g. RSA (Rivest-Shamir-Adleman), and ECC (Elliptic Curve Cryptography). 

T he security of cryptographic algorithms is about successful transmission of the 

information without it being intercepted by an adversary. The security largely a function of 

the encryption key/keys. This is supported by the Kirchhoff 's principle, which states that: a 

cryptosystem should be secure even if everything about the system, except the key, is public 

knowledge [17]. The idea is that, if any part of a cryptosystem (except the individual secret 

key) has to be kept secret then the cryptosystem is indeed not secure. That's because if the 

simple act of disclosing some detail of the system were to make it suddenly insecure then 
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you've got a problem on your hands. The generation of the key stream is thus an issue of 

concern. In a stream cipher, the keystream, is the sequence which is combined, digit by digit, 

to the plaintext sequence for obtaining the cipher-text sequence     The keystream is 

generated by a nite state automaton called the keystream generator. keystreams are required 

to pass prescribed statistical tests. The statistical analysis of the random sequences 

(keystream) is very important but alongside the application of statistical tests that assess the 

outcome of a randomness generator, there must be a serious analysis of the source the 

generator extracts randomness from [10]. The quality of a keystream by way of its 

randomness/complexity, largely depends on the nonlinearity of the generating function used 

[4]. One function that has stand out as an efficient tool in this regard is the Boolean function. 

The study of Boolean functions has been a branch of cryptography for many 

decades. In 1949 Shannon established the foundations of modern cryptography by 

formulating the notion of product ciphers which use two basic cryptographic 

transformations: permutations and substitutions. These transformationsuse Boolean functions 

with desirable cryptographic properties [8, 2]. 

Boolean functions are the building blocks of symmetric cryptographic systems [6]. 

Symmetrical cryptographic algorithms are fundamental tools in the design of all types of 

digital security systems. A concise reference on how Boolean functions are used in 

cryptography. Currently, practitioners who need to apply Boolean functions in the design of 

cryptographic algorithms and protocols need to insight into detailed properties and/or 

characteristics of Boolean functions. 

The most important part of a stream cipher is the key stream generator, which 

provides the overall security for stream ciphers. Nonlinear Boolean functions were preferred 

for a long time to construct the key stream generator. In order to resist several known attacks, 

many requirements have been proposed on the Boolean functions [7]. Attacks against the 

cryptosystems have forced deep research on Boolean function to allow us a more secure 

encryption. 

Symmetric cryptosystems' security is strongly influenced by the Boolean functions 

deployed. Hence, the knowledge about cryptographic properties of Boolean functions will 

hence guide the systems' designer with regards the choice of the most suitable Boolean 

function to use. With a cryptographic mind, one needs to have the following knowledge 

about Boolean functions: 

The properties of Boolean functions; 

The design and implementation of Boolean functions; 

The existence, distribution, construction of Boolean functions with certain properties; 
 

(a)         (b)  

Figure 1: Cryptographic Algorithms.        
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The trade-off between various required properties of Boolean functions, with a view to 

maximize quality and improve the performance of cryptosystems; 

The study of new properties according to new attacksthatwill be emerging with time. 

2.    Preliminaries 

A Boolean function   of  variables is a set of all possible mappings     
      where     

is a Galois field of order   and   
  is its corresponding vector space [19]. Such a Boolean 

function can be represented as a polynomial viz: 
 

 ( )   (          )       
      (2) 

where     and       
 . This representation is known as algebraic normal form (ANF) and 

its degree is called the algebraic degree. 

The field of all Boolean functions    of order   has cardinality 2
2n

. A Boolean function 

 ( )   (          ) of   variables is usually represented by its truth table, of dimension 

2
n
 The number of 1s in the truth table (TT) is called the Hamming weight   ( ), of the 

function  . 

  ( )  *   ( )        + (3) 

A Boolean function is said to be balanced if   ( )   
   . Given two Boolean functions 

      , their Hamming distance is given by   (   )    (   ). 

  (   )    (    )  *    
   ( )   (  )+ (4) 

The desirable cryptographic properties of Boolean functions include among others, 

nonlinearity, correlation immunity, algebraic degree, linear structure, Strict avalanche 

criterion, Balancedness and resiliency etc. Some of these properties can be best studied using 

the Walsh transform. 

Let   (          )   (          )    
 . 

Definition 2.1 (Walsh Transform) the Walsh transform of an  -variable Boolean function  is 

an integer valued function,      
    defined by  

  ( )    ∑ (  ) ( ) (   )    
 (5) 

where(   )                    
The term   ( ) is called the Walsh coefficient of   at the point   which satisfies the 

Parseval's equation: 

∑   
 ( )    

 

    
 .  

The set of all the Walsh coefficients is referred as the Walsh spectrum of  . 

The derivative of a Boolean function   with wrt to a   ( ) is define by   ( )  

 ( )  (   ). The periodic autocorrelation function of   is a real-valued function defined 

on all     
  given by 

   ( )  ∑ (  )  ( )    
 (6) 
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3.Complexity Requirements of Boolean functions for Cryptographic Application 

3.1 Nonlinearity 
The equivalence of Nonlinearity to the principle of confusion introduced by Claude Elwood 

Shannon in 1949 [15] allows it to be used as a measure of complexity of Boolean functions and 

for measuring linear attacks involved in stream and block. These linear attacks are due to the 

existence of affine approximations of the Boolean functions used in the systems. The Measure of 

the nonlinearity of the Boolean functions determines the complexity of the system developed, the 

measure of this nonlinearity could either be algebraic: the degree of the ANF, or functional: the 

minimal distance from the function to the set of all affine functions. 

Definition 3.1 (Nonlinearity). The nonlinearity    of a Boolean function is its minimum 

Hamming distance to the set of all affine functions with n-variables 

              (     )                                                                                               (7) 

where        is the set of all affine functions. 

In terms of the Walsh transform 

        
 

 
   

    
 
|  ( )|                                                                                     (8) 

It is widely reported in literature that               
 

 

3.2 Correlation Immunity 
The concept of correlation immune functions was introduced by Siegenthaler [16], they are 

primarily designed to resist a correlation attack. 
 

Definition 3.2 A Boolean function   is called      order correlation immune 

iff  ( )    for all vectors     
  such that     ( )   . 

A balanced      order correlation immune Boolean function    is called  -resilient. In 

other words, the function   is      order correlation immune if   ( )    for all  

    ( )   . 

3.3 Algebraic Immunity 
An annihilator of the function      is a nonzero function      such that     . Given a 

Boolean function  , the algebraic immunity of  ,   ( )is the minimum degree of all 

annihilators of  or    . As has been reported by [5, 11, 3],   ( )  ,   -. In order to resist 

an algebraic attack, the Boolean function  ( ) should have the property that there is no non-zero 

Boolean function  ( ) such that  ( ) ( )   ( )     ( )has a low algebraic degree. 

  ( )     *(    ( ( )| ( ) ( )   )+ (9) 

4.    Stream Ciphers 

Symmetric cryptography is split into block ciphers and stream ciphers. A stream cipher is a 

symmetric cipher which operates with a time-varying transformation on individual plaintext 

digits. Stream ciphers can encrypt plaintext messages of variable length. Fig. 2 shows a 

general structure of a synchronous (keystream is generated independent of the plaintext 

stream) stream cipher showing both encryption and decryption. The keystream k = (O1, O2, 

… )isusedtoencryptthemessageM to produce the cipher-textCi.  

         (10) 
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Figure 2: A stream Cipher. 

The one-time pad can be thought of as an example - each message uses a portion of the key 

with length equal to the length of the plaintext message. (Then that portion of the key is 

never re-used.) 

4.1 Construction Using Boolean Functions 
The combination of a key stream generator and an encryption algorithm makes up what is called 

a stream cipher [13]. The encryption algorithm XORs the plaintext with the key stream. Since the 

plaintext is of public knowledge, hence, the security of the stream cipher depends on the security 

of the key stream. The key stream generator (Fig. 3) is considered as a combination of two parts 

[13], the first part, referred to as the driven part consists of Linear Feedback Shift registers 

(LFSRs). By design, the operation of the LFSR is linear [9], thus therefore the security of the key 

stream generator depends on the nonlinear part, which controls the states of the generator [1, 9]. 

The design of the driven part is relatively simple, since the theory of LFSR is mature, especially 

that we have a maximum length sequence with good pseudo-randomness. The nonlinear 

combination part combines the sequences from the driven part into a sequence with good 

cryptographic properties. The use of Boolean functions in the nonlinear part of the key stream 

generators has been for quite some times now [12, 14]. The nonlinear Boolean functions used in 

the generation of the key streams could either be filter functions of combining functions. With 

filter functions, one LFSR is used as the driven part (Fig.3a), while the combining generator uses 

several LFSRs as the driven part (Fig. 3b). The corresponding key stream generators are called 

nonlinear filter sequence generators (see Fig.3a) and nonlinear combination sequence generators 

(see Fig. 3b). 

4.2 Attacks and Required Properties 
If we consider the nonlinear combination sequence generator (Fig. 3b), the correlation between 

the output sequence *  + and every input sequence *   +(     ), enables one to recover 

the initial states and the feedback function of LFSRi using statistical methods. This kind of attack 

is called correlation attack. 

Another form of attack peculiar to sequence generators is the linear attack. This attacks 

sequence of high complexity using a sequence of low complexity. The efficiency of such an 

attack is proportional to the value of the Walsh transform of the Boolean function   ( ) used. 

Figure 3: Key Stream Generators 
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Consequently, we require a high nonlinearity of the Boolean function to resist linear attacks. 

In LFSR-based stream ciphers, the performance of Boolean functions against algebraic attack 

received considerable attention since the year 2003. Boolean functions with big algebraic 

immunity can resists algebraic attacks to certain extend. However, no matter how high the 

algebraic immunity of a Boolean function is, it may not resist a fast algebraic attack [5]. Fast 

algbraic attack is an improvement of algebraic attack. 

In the fast algebraic attack, the Boolean function  ( ) must not have a low degree 

multiple. The fast algebraic attack will still be efficient even if there exists a low degree (less 

than   ( )) of the function  ( ) such that the degree of  ( ) ( )   ( ) is not too 

big. If the degree of  ( )is  (     ), then fast algebraic attack can be converted to 

solve a system of equations with degree less than  . The research in fast algebraic attack 

shows that for any Boolean function  ( ) andintegers  ;   such that      , there 

exists Boolean function  such that   ( ) ( )   ( ), with deg( ( ))     and 

deg( (   ))   . So there are no Boolean functions which can totally resist fast 

algebraic attacks, but we can choose some special Boolean functions which have high 

complexity against a fast algebraic attack. 

Details of how the tow attacks works can be found in [5, 11] and references 

contained therein. Thus therefore with stream ciphers, the Boolean function used in the 

keystream generating algorithm should have the following properties corresponding to the 

kind of attack. 

Statistic analysis: The Boolean function should be balanced. 

Linear attack: The function used should have high nonlinearity. 

Correlation attack: High correlation immunity. 

Algebraic attack: High algebraic immunity. 

 

5. Conclusions 

Boolean functions are the most important part in symmetric cryptosystems. In this 

paper, we summarized some major properties of Boolean functions which make them resist 

to several attacks. One may want to find a Boolean function that holds all the security 

properties, but a trade-off is certainly necessary. The construction of Boolean functions with 

certain properties is the main research subject of cryptographic Boolean functions. We may 

also require new properties because attacks never stop. The quantitative evaluation of 

Boolean functions regarding security applications and the relation between different 

properties remain an important research topic. 
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