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Abstract   

The work investigated some properties of a uniformly convex functions associated with a 

q-derivative operator. Properties studied include growth and distortion theorem of the 

subclass under consideration. The results showed that the operator generalized the 

coefficients of the subclass. 
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1.1   INTRODUCTION 

Let A  be the class of   functions of the form 
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which  are analytic in the open unit disk { : 1}E z z=   in the complex plane with the 

usual normalization  (0) (0) 1.f f = − Here S  denotes  the subclass  of A consisting of 

analytic and univalent functions. 

The q-derivative operator is a linear operator with a wide range of applications in Fractal, 

dynamical systems, quantum groups and q-deformed super-algebras, see [1,2] .Study of 

various classes of analytic functions are made possible using the concept of q-calculus. 

Other areas of applications are hypergeometric functions, complex variables [3,4]. 

     Definition 1.1 [1] 

Let (0,1)q  and let  C . The q number− , denoted [ ]q ,we define as  
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In the case when n =  ,we obtain 2 1[ ] 1 n

q q q q −= + + + + , and when 1q −→  then  

[ ]qn n= . The symmetric q number− ,denoted  
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Definition 1.2  [1] 
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The q derivative−  of a function ,f defined on a subset of C , is given by 
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,     for 0z    and equal to (0)f    if  0z = .  

Given the power series 
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then  
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Definition  1.3   [1]. 

The symmetric q derivative− qD f of a function is defined as follows: 
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 Definition 1.5   [1]. 

Let 0 k    and 0 1.  By ( )qk ST − we denote  the class of functions f A  

    satisfying the condition 

+−
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Let P be the Caratheodory class of functions with positive real part consisting of all 

functions p analytic  in D satisfying (0) 1,p = and ( ( )) 0.p z   Letting 
( )( )

( )
( )

qz D f z
p z

f z
=

condition (1.7) may be written in the form  ( ) ( ) 1p z k p z   − + ( )z D or
,kp p  ,  is a 

function with a  positive real part, that maps the unit disk onto a domain 
,k  described by 

the inequality  ( ) ( ) 1p z k p z   − + . Note that  
,k  is a domain bounded by a conic 

section ,symmetric about real axis and contained in a right half plane.[5] 

The representation of 2

, 1 21kp Pz P z = + + +  

Definition 1.6 ( k-uniformly convex function with respect to q-symmetric derivative 

operator). 
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Let 0 k  and 0 1  . By )(
~

qCVUk −  we denote the class of functions f A

satisfying the condition   +
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The method adopted to obtain the coefficient inequality for the class of  qCVUk
~

−   is due 

to [1] 

2.1   COEFFICIENTS  ESTIMATES 

Theorem 2.1  

 Let 0 1q   and f S  be given by (1.6) . If the inequality  

             −+−+


=
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  holds true for  some k (0 )k    and  (0 1)  , then  )(
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PROOF.    

Since )(
~

qCVUk −  then definition (1.6)   is satisfied. Thus, using the fact that 

Re ( )f z  implies that 

( ) 1 1f z −  −   on definition (1.6) results in the inequality 
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        Substituting  in  equation (2.2) yields  
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(2.3) 

              Upon letting 1z −→  and after some easy computation on the right side of (2.3)  gives 
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Theorem  2.2  will dwell on finding the necessary and sufficient condition for a function 

in the class  )(
~

qCVUk − .The method applied here is due to [1]. 

Theorem 2.2 

Let 0 ,k   0 1.q  and 0 1.  A necessary and sufficient condition for f of the 

form 
2

2( ) ( 0)nf z z a z a= − −  to be in the class  )(
~

qCVUk −  is that  
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The result is sharp, equality holds for the functions f given by 
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 If  )(qUCVkf −  then from the right-side of  inequality  (2.3)  in theorem  (2.1)  one 

can  write   
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Now, clearing the denominator of (2.7) and choosing values of z on the real axis so that  

)(
~

zfDq  is real and letting 1z −→ through the real values  gives  
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which  is the required result.  

The next theorem gives the growth properties of the class )(
~

qCVUk −  

Theorem 2.3     
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  Let 0 k   , 0 1.q  Let the function f defined by  2

2( )f z z a z= − − ( 0)na   

 be in the class )(
~

qCVUk −  ,Then for 1z r= 
 
it holds 
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Equality in (2.09) holds true for the functions given by  
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 Proof.     Given that )(
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qCVUk −  result of theorem (2.2) can be expressed in the form 
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Letting 1r −→  gives the required results. 

Theorem 2.4 

Let 0 ,0 1k q     and 0 1.  Let the function f with the representation  
2( ) nf z z a z= − − ( 0)na   be a member of the class )(
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 Differentiating f and applying triangle inequality for the modulus will yield  
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             and                    
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  Following (2.13) ,(2.14) and consequences of  (2.11)   the equation in  (2.12)   is 

obtained.  

 

3.0   CONCLUSION 

 The class of k-uniformly convex and starlike functions have been studied by several 

authors such as  [1] , [2] to mention but a few. These researchers used different 

differential  and integral operators to obtain various bounds. Specifically, q-symmetric 

derivative operator was used by  [1] to obtain the coefficient bounds,growth theorem, and 

proved the necessary and sufficient condition for a class of k-uniformly starlike function 

associated with q-symmetric derivative operator . Following a method due to [1] the 

coefficient estimates of k-uniformly convex functions and some results were obtained 

using simple partial differential calculus, binomial theorem, q-symmetric derivative   

operator. The operator in a similar pattern generalizes the coefficient properties of this 

subclass, see [6]. 
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