COEFFICIENT PROPERTIES OF A K-UNIFORMLY CONVEX FUNCTIONS ASSOCIATED WITH A Q-DERIVATIVE OPERATOR

Emelike Ukeje and chidinma N. Nwosu
Department Of Mathematics MOUAU.
ukeje.emelike@mouau.edu.ng calculus20032002@gmail.com

Abstract

The work investigated some properties of a uniformly convex functions associated with a q-derivative operator. Properties studied include growth and distortion theorem of the subclass under consideration. The results showed that the operator generalized the coefficients of the subclass.

KEYWORDS: q-number, q-symmetric derivative, uniformly convex functions,

1.1 INTRODUCTION

Let A be the class of functions of the form
$f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$
which are analytic in the open unit disk $E=\{z:|z|<1\}$ in the complex plane with the usual normalization $f(0)=f^{\prime}(0)-1$. Here S denotes the subclass of A consisting of analytic and univalent functions.
The q-derivative operator is a linear operator with a wide range of applications in Fractal, dynamical systems, quantum groups and q-deformed super-algebras, see [1,2] .Study of various classes of analytic functions are made possible using the concept of q-calculus. Other areas of applications are hypergeometric functions, complex variables [3,4].

Definition 1.1 [1]

Let $q \in(0,1)$ and let $\lambda \in C$. The q-number, denoted $[\lambda]_{q}$, we define as

$$
[\lambda]_{q}=\frac{1-q^{\lambda}}{1-q}
$$

In the case when $\lambda=n \in \mathrm{~N}$, we obtain $[\lambda]_{q}=1+q+q^{2}+\cdots+q^{n-1}$, and when $q \rightarrow 1^{-}$then $[n]_{q}=n$. The symmetric $q-$ number, denoted

$$
[\tilde{n}]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}
$$

Definition 1.2 [1]

The q-derivative of a function f, defined on a subset of C, is given by $\left(D_{q} f\right)(z)=\frac{f(z)-f(q z)}{(1-q) z}, \quad$ for $z \neq 0$ and equal to $f^{\prime}(0)$ if $z=0$.
Given the power series $f(z)=z+a_{2} z^{2}+\cdots$
then

$$
\left(D_{q} f\right)(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}
$$

Definition 1.3 [1].

The symmetric q-derivative $\tilde{D}_{q} f$ of a function is defined as follows:

$$
\left(\tilde{D}_{q} f\right)(z)=\frac{f(q z)-f\left(q^{-1} z\right)}{\left(q-q^{-1}\right) z} \quad \text { for } z=0, \text { and equal to } f^{\prime}(0) \text { for } z=0
$$

when $f(z)=z+a_{2} z^{2}+\cdots$ then

$$
\left(\tilde{D}_{q} f\right)(z)=1+\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n} z^{n-1}
$$

Definition 1.5 [1].

Let $0 \leq k<\infty$ and $0 \leq \alpha<1$. By $k-S T_{q}(\alpha)$ we denote the class of functions $f \in A$ satisfying the condition
$\operatorname{Re}\left(\frac{z\left(\tilde{D}_{q} f(z)\right)}{f(z)}\right)>k\left|\frac{z\left(\tilde{D}_{q} f(z)\right)}{f(z)}-1\right|+\alpha \quad(z \in D)$
Let P be the Caratheodory class of functions with positive real part consisting of all functions p analytic in D satisfying $p(0)=1$, and $\mathfrak{R}(p(z))>0$. Letting $p(z)=\frac{z\left(\tilde{D}_{q} f\right)(z)}{f(z)}$ condition (1.7) may be written in the form $\mathfrak{R p} p(z)>k|p(z)-1|+\alpha(z \in D)$ or $p \prec p_{k, \alpha}$, is a function with a positive real part, that maps the unit disk onto a domain $\Omega_{k, \alpha}$ described by the inequality $\mathfrak{R p}(z)>k|p(z)-1|+\alpha$. Note that $\Omega_{k, \alpha}$ is a domain bounded by a conic section ,symmetric about real axis and contained in a right half plane.[5] The representation of $p_{k, \alpha}=1+P_{1} z+P_{2} z^{2}+\cdots$
Definition 1.6 (k-uniformly convex function with respect to \mathbf{q}-symmetric derivative operator).

Let $0 \leq k<\infty$ and $0 \leq \beta<1$. By $k-\tilde{U} C V_{q}(\beta)$ we denote the class of functions $f \in A$ satisfying the condition $\operatorname{Re}\left(\frac{z\left(\tilde{D}_{q} f\right)^{\prime}(z)}{\left(\tilde{D}_{q} f\right)(z)}+1\right)>k\left|\frac{z\left(\tilde{D}_{q} f\right)^{\prime}(z)}{\left(\tilde{D}_{q} f\right)(z)}\right|+\beta \quad, z \in E$
The method adopted to obtain the coefficient inequality for the class of $k-\tilde{U} C V_{q}$ is due to [1]

2.1 COEFFICIENTS ESTIMATES

Theorem 2.1

Let $0<q<1$ and $f \in S$ be given by (1.6). If the inequality

$$
\begin{equation*}
\sum_{n=2}^{\infty}[\tilde{n}]_{q}[n(k+1)-k+\beta]\left|a_{n}\right|<1-\beta \tag{2.1}
\end{equation*}
$$

holds true for some $k(0 \leq k<\infty)$ and $\beta(0 \leq \beta<1)$, then $k-\tilde{U} C V_{q}(\beta)$.
PROOF.
Since $k-\tilde{U} C V_{q}(\beta)$ then definition (1.6) is satisfied. Thus, using the fact that $\operatorname{Re} f(z)>\beta$ implies that
$|f(z)-1|<1-\beta$ on definition (1.6) results in the inequality

$$
\begin{equation*}
(k+1)\left|\frac{z\left(D_{q}\right)^{\prime}(z)}{\left(D_{q} f\right)(z)}\right|<1-\beta \tag{2.2}
\end{equation*}
$$

Given that $\quad\left(\tilde{D}_{q} f\right)(z)=1+\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n} z^{n-1} \quad$ and $\quad\left(D_{q}\right)^{\prime}(z)=\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n}(n-1) z^{n-2}$
Substituting in equation (2.2) yields
$(k+1)\left|\frac{\sum_{n=2}^{\infty}[n]_{q} a_{n}(n-1) z^{n-2}}{1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}}\right|<(k+1)\left|\frac{\sum_{n=2}^{\infty}[n]_{q} a_{n}(n-1) z^{n-2}}{1-\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}}\right|<1-\beta$
Upon letting $z \rightarrow 1^{-}$and after some easy computation on the right side of (2.3) gives

$$
\begin{equation*}
\sum_{n=2}^{\infty}[\tilde{n}]_{q}[n(k+1)-k+\beta] a_{n} \mid<1-\beta \tag{2.4}
\end{equation*}
$$

Theorem 2.2 will dwell on finding the necessary and sufficient condition for a function in the class $k-\tilde{U} C V_{q}(\beta)$.The method applied here is due to [1].

Theorem 2.2

Let $0 \leq k<\infty, 0<q<1$. and $0<\alpha<1$. A necessary and sufficient condition for f of the form $f(z)=z-a_{2} z^{2}-\cdots\left(a_{n} \geq 0\right)$ to be in the class $k-\tilde{U} C V_{q}(\beta)$ is that

$$
\begin{equation*}
\sum_{n=2}^{\infty}[\tilde{n}]_{q}[n(k+1)-k+\beta] a_{n} \leq 1-\beta \tag{2.5}
\end{equation*}
$$

The result is sharp, equality holds for the functions f given by

$$
f(z)=z-\frac{1-\beta}{[\tilde{n}]_{q}[n(k+1)-k+\beta]} z^{n}
$$

Proof:

If $f \in k-U C V_{q}(\alpha)$ then from the right-side of inequality (2.3) in theorem (2.1) one can write

$$
\begin{align*}
& \left.\left|\frac{1-\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n} z^{n-1}}{1-\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n} z^{n-1}}\right|>(k+1) \right\rvert\, \frac{\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n}(n-1) z^{n-2}}{1-\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n} z^{n-1} \mid} \tag{2.6}\\
& \frac{1-\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n} z^{n-1}-\beta-\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n} \beta z^{n-1}}{1-\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n} z^{n-1}} \geq \frac{\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n}(k+1)(n-1) z^{n-2}}{1-\sum_{n=2}^{\infty}[\tilde{n}]_{q} a_{n} z^{n-1}} \tag{2.7}
\end{align*}
$$

Now, clearing the denominator of (2.7) and choosing values of z on the real axis so that $\tilde{D}_{q} f(z)$ is real and letting $z \rightarrow 1^{-}$through the real values gives
$\sum_{n=2}^{\infty}[\tilde{n}]_{q}[n(k+1)-k+\beta] a_{n} \leq 1-\beta$
which is the required result.
The next theorem gives the growth properties of the class $k-\tilde{U} C V_{q}(\beta)$

Theorem 2.3

Let $0 \leq k<\infty, 0<q<1$. Let the function f defined by $f(z)=z-a_{2} z^{2}-\cdots\left(a_{n} \geq 0\right)$ be in the class $k-\tilde{U} C V_{q}(\beta)$, Then for $|z|=r<1$ it holds

$$
\begin{equation*}
r-\frac{q(1-\beta)}{\left(q^{2}+1\right)[2(k+1)-k+\beta]} r^{2} \leq|f(z)| \leq r+\frac{q(1-\beta)}{\left(q^{2}+1\right)[2(k+1)-k+\beta]} r^{2} \tag{2.9}
\end{equation*}
$$

Equality in (2.09) holds true for the functions given by

$$
\begin{equation*}
f(z)=z+\frac{q(1-\beta)}{\left(q^{2}+1\right)[2(k+1)-k+\beta]} z^{2} \tag{2.10}
\end{equation*}
$$

Proof. Given that $k-\tilde{U} C V_{q}(\beta)$ result of theorem (2.2) can be expressed in the form $\frac{\left(q^{2}+1\right)}{q}[2(k+1)-k+\beta] \sum_{n=2}^{\infty} a_{n} \leq \sum_{n=2}^{\infty}[n]_{q}[n(k+1)-k+\beta]|a| \leq 1-\beta$
which yields $\sum_{n=2}^{\infty} a_{n} \leq \frac{q(1-\beta)}{\left(q^{2}+1\right)[2(k+1)-k+\beta]}$.
(2.11)

Therefore,
$|f(z)| \leq|z|+\sum a_{n}|z|^{n} \leq r+\frac{q(1-\beta)}{\left(q^{2}+1\right)[2(k+1)-k+\beta]} r^{2}$
and
$|f(z)| \geq|z|-\sum_{n=2}^{\infty} a_{n}|z|^{n} \geq r-\frac{q(1-\beta)}{\left(q^{2}+1\right)[2(k+1)-k+\beta]} r^{2}$.
Letting $r \rightarrow 1^{-}$gives the required results.

Theorem 2.4

Let $0 \leq k<\infty, 0<q<1$ and $0 \leq \alpha<1$. Let the function f with the representation $f(z)=z-a_{n} z^{2}-\cdots\left(a_{n} \geq 0\right)$ be a member of the class $k-\tilde{U} C V_{q}(\beta)$. Then for $|z|=r<1$.

$$
\begin{equation*}
1-\frac{2 q(1-\beta)}{\left(q^{2}+1\right)[2(k+1)-k+\beta]} \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2 q(1-\beta)}{\left(q^{2}+1\right)[2(k+1)-k+\beta]} \tag{2.12}
\end{equation*}
$$

Proof.

Since $\quad f(z)=z+\frac{q(1-\beta)}{\left(q^{2}+1\right)[2(k+1)-k+\beta]} z^{2}$,
Differentiating f and applying triangle inequality for the modulus will yield $\left|f^{\prime}(z)\right| \leq 1+\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \leq 1+r \sum_{n=2}^{\infty} n a_{n}$ (2.13)
and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq 1-\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \leq 1-r \sum_{n=2}^{\infty} n a_{n} \tag{2.14}
\end{equation*}
$$

Following (2.13),(2.14) and consequences of (2.11) the equation in (2.12) is obtained.

3.0 CONCLUSION

The class of k-uniformly convex and starlike functions have been studied by several authors such as [1] , [2] to mention but a few. These researchers used different differential and integral operators to obtain various bounds. Specifically, q-symmetric derivative operator was used by [1] to obtain the coefficient bounds, growth theorem, and proved the necessary and sufficient condition for a class of k-uniformly starlike function associated with q-symmetric derivative operator . Following a method due to [1] the coefficient estimates of k-uniformly convex functions and some results were obtained using simple partial differential calculus, binomial theorem, q -symmetric derivative operator. The operator in a similar pattern generalizes the coefficient properties of this subclass, see [6].

REFERENCES

[1]. Kanas, S. Altinkaya, S. Yalcin (2017)‘Subclass of k-uniformly starlike functions defined by symmetric q-derivative operator',arXiv:1708,08230vi[math,CV] .Cornel University Press, vol. 73 (11) pp.1-19.
[2] H. M. Srivastava and A.K. Mishra, Applications of fractional calculus to parabolic starlike and
uniformly convex functions ,Comput.Math.Appl. 39 (3-4) (2000),pp. 57-69.
[3] G. Gasper and M. Rahman, 'Basic hypergeometric series', Cambridge Univ. Press, Cambridge, MA , 1990.
[4] Rosihan M. Ali and V. Ravchandran, Uniformly convex and uniformly starlike functions arXiv:1106.4377vI [math.CV]22 Jun 2011.Cornel University Press.
[5] N. Magesh .Certain subclasses of uniformly convex functions of order α and type β with varying arguments. Journal of the Egyptian Mathematical society (2013) 21, pp. 184-189.
[6] E. Ukeje, Generalization of coefficient Inequalities and Convolution properties of a class of Analytic
Functions with Respect to a differential operator. Journal of the Nigerian Association of Mathematical
Physics, volume 34, (March,2016),pp 5-12.

