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Abstract 

In this paper, a time series smoothing technique derived from the modification of the 3-

step implicit linear multistep numerical method was developed. The modified time series 

smoothing technique proposed in this paper was called 3-step mAMT and is applied to a 

dataset with a high fluctuation. The 3-step mAMT is compared with the simple moving 

average and the simple exponential smoothing (𝛼 = 0.8) and the 3-step mAMT performed 

better than the two other techniques. The measures of best fit used are the MAE, MSE, 

RMSE, and MAPE. The mAMT Order-4 produced a better result when compared to moving 

average and the simple exponential smoothing having an  𝑅2 greater than the other 

techniques. 

Keywords: Time series, linear Multistep, Adams-Moulton, Implicit, 3-step, Smoothing 

technique, Forecasting. 

 

 Introduction 

  

 Due to the presence of random variations in real time series data and the effects they 

pose to forecast results, it is sometimes important to reduce these variations by way of 

smoothing the data using adequate time series smoothing techniques. These smoothing 

techniques are essential as they are deployed to reduce white nose from the time series data 

and highlight some useful details contained in the data. Fluctuations presence in the time 

series data can be carefully removed, so that appropriate forecast can be adequately made. 

 There are numerous time series smoothing techniques available to data scientists 

but a few are widely used. Because of its simplicity, exponential smoothing is widely used 

and produces wonderful results as they assign more weights to the most recent observations 

during the computation process. Exponential smoothing is the old smoothed value plus a 

systemic adjustment of errors that occurred in the new smoothed values (Ostertagova et al., 

2012). This technique is best applied to time series data that do not have trends or 

seasonality (Paul, 2011; Ravinder, 2013; Kumari et al., 2014; Silitonga et al., 2020). It is 
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also the smoothing technique that is most adequate in analyzing univariate time series data 

(Attanayake et al., 2020). The accuracy of the exponential smoothing technique relies 

heavily on the smoothing constant. There are diverse types of the exponential smoothing 

techniques (Pronchakovet al., 2019) but the most common is the simple exponential 

smoothing (SES). 

 The simple exponential smoothing equation can be written as: 

𝑌𝑡+1 = 𝛼𝑓𝑡 + (1 + 𝛼)𝑌𝑡                                                               (1) 

where 𝑓𝑡 is the actual observation, 𝑌𝑡 is the smoothened value of the 𝑓𝑡 at time 𝑡, 𝑌𝑡+1 is the 

smoothened value of 𝑓𝑡 at time 𝑡 + 1, and 𝛼 is the smoothing constant. 

 The beautiful time series smoothing technique developed by Nwokike et al., (2021), 

is another newly introduced data smoothing technique that produces some very good 

results. The technique was derived from the modification of the Adams-Bashforth oder-4 

numerical technique and used for time series data smoothing in a way similar to what we 

have developed in this research work. The model can be seen below: 

𝑌𝑡 =
1

24
(55𝑓𝑡 − 59𝑓𝑡−1 + 37𝑓𝑡−2 − 9𝑓𝑡−3)                                         (2) 

 The moving average smoothing technique is another widely used time series 

smoothing technique (Pierrefeu, 2019), and has similarity to the exponential smoothing 

technique in removing white noise in time series data. This technique is easy to implement 

and for this reason is seen as common and useful if the series has no identifiable tendency 

of trend or seasonality (Ostertagova 2016). There are many types of the moving average 

smoothing technique (Ostertagova 2016; Pierrefeu, 2019). 

 The simple moving average equation can be written as: 

𝑌𝑡+1 =
1

𝑛
∑ 𝑓𝑡−𝑛+1+𝑗

𝑛−1

𝑗=1

                                                            (3) 

Where; 

𝑡 = 𝑛, 𝑛 + 1, … , 𝑁 

𝑌𝑡 =New forecast 

𝑓𝑡 =Original time series observation 

𝑛 = Number of observation. 

  

 The Holt-Trend exponential smoothing and ARIMA forecasting technique was 

applied by Khamis et al. (2020) to forecast gold bullion coin prices in Malaysia. Time 

series smoothing techniques have also been studied in the works of Kolkova (2018), 

Pronchakov et al. (2019), Raudys et al. (2018), Duttadeka et al. (2014), Alajbeg  et al. 

(2017), Indriana et al. (2010), Mustapa et al. (2019), and Hung (2016). 
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 In this research, focused is on developing a new time series smoothing technique 

derived from the modification of a linear multistep method called the Oder-4 Adams-

Moulton method, which is suitable for all kind of data sets 

 The linear multistep numerical method is a numerical method for providing solution 

to ordinary and partial differential equations where the initial value problems are first 

given. The linear multistep methods are popular for solving first order initial value problem 

(IVP) but are also adequate for solving higher orders by first reducing them to first order 

IVPs (Jator, 2008).  The generic description of a linear multistep method is described by 

Alen Alexanderian (2018) as: 𝑥𝑛 = 𝑎 + 𝑛ℎ, 𝑛 = 0, … , 𝑁  with  ℎ = (𝑏 − 𝑎)/𝑁. The 

general form of a multistep method is  

𝑦𝑛+1 = ∑ 𝛼𝑗𝑦𝑛−𝑗 +

𝑝

𝑗=0

ℎ ∑ 𝛽𝑗𝑓(𝑥𝑛−𝑗 , 𝑦𝑛−𝑗),   𝑛 ≥ 𝑝

𝑝

𝑗=0

                                    (4) 

Where {𝛼𝑖}
𝑖=0
𝑝

 and {𝛽𝑖}
𝑖=−1
𝑝

  are constant coefficients, and𝑝 ≥ 0. If  𝛼𝑝 ≠ 0 or 𝛽𝑝 ≠ 0  

either, then the method is called a 𝑝 + 1  step method. The initial values,𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑝 

must be obtained by other means (e.g., an appropriate implicit method). Note that if 𝛽−1 =
0 then the method is explicit, and if  𝛽−1 ≠ 0, the method is implicit. Also, here we use the 

convention that  𝑦(𝑥𝑛) is the exact value of 𝑦  at  𝑥𝑛 and  𝑦𝑛 is the numerically computed 

approximation to 𝑦(𝑥𝑛). 
 The 3-step Adams-Moulton method considered in this research is a special case of 

the linear multistep method called the implicit schemes. The 3-step Adams-Moulton 

method which we have stated are implicit, have minimal error constants, involves less steps 

and computation, and have a better stability region than the explicit linear multistep 

methods (Dattani, 2008).  

 The method leading to the derivation of the 3-step Adams-Moulton method was first 

developed by John Cauchy Adams who applied the implicit equation to derive the 

formulae. In 1926, Forest Ray Moulton in his research, discovered that the method can be 

applied simultaneously with the Adams-Bashforth method to produce a predictor-corrector 

numerical method (Ernst et al., 1993). This method is based on the idea of replacing with 

a polynomial the integrand that interpolates the function 𝑓(𝑥, 𝑦) at the points  𝑥𝑛, 𝑦𝑛.  

 

 Motivation 

  

 Science is emerging with unending ideas. It is interesting to see the advent of new 

techniques in problem solving especially in the field of mathematics and engineering. 

Scientific problems come in different shades and require careful study and 

recommendation for lasting solutions. The motivation for this work is the many uses of 
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logarithms Laplace transformation, Fourier transforms and other mathematical techniques 

to solve problems in other diverse fields of study. This research is geared towards 

proposing a better time series smoothing technique, developed from the modification of an 

implicit linear multistep method also called the Order-4 Adams-Moulton method. 

 

 Derivation of the Modified3-step Adams-Moulton Smoothing Technique 

 

 The time series smoothing technique proposed in this paper is a modification of 

the3-step implicit linear multistep numerical method also referred to as the 3-step Adams-

Moulton technique. The modified 3-step Adams-Moulton technique which we shall also 

call: 3-step mAMT is derived as follows: 

The linear multistep method is based on the Stone-Weierstrass Theorem. 

 

Theorem: The Stone-Weierstrass Theorem - Let 𝑓(𝑡) ∶ ℝ →  ℂ be continuous on  𝑡 ∈
[𝑎, 𝑏]. For all 𝜖 > 0, ∃ a polynomial  𝜑(𝑡) ∋ ||𝑓(𝑡) − 𝜑(𝑡)|| < 𝜖. 

This is to say that; any continuous function can be approximated to an arbitrary accuracy 

by a polynomial; generally, the more demanding the accuracy of the approximation, the 

higher the order needed of such a polynomial (Dattani, 2008). 

With the Stone-Weierstrass theorem stated, let; 

𝑦′ =  𝑓(𝑥, 𝑦),    𝑦(𝑥0) = 𝑦0                                                               (5) 

Integrate both sides to have: 

∫ 𝑦′
𝑥𝑡+1

𝑥𝑡

(𝑥)𝑑𝑥 = 𝑦(𝑥𝑡+1) − 𝑦(𝑥𝑡) = ∫ 𝑓(𝑥, 𝑦(𝑥))
𝑥𝑡+1

𝑥𝑡

𝑑𝑥                           (6) 

Integrate 𝑓(𝑥, 𝑦(𝑥)) analytically would require no numerical methods to determine the 

solution to problem. According to the Stone-Weierstrass Theorem, if analytic integration 

is unlikely, then, we approximate it with arbitrary accuracy by a polynomial𝜑(𝑥). Since 

all polynomials can be integrated analytically, then, we have a fair approximation of the 

solution to the ODE: 

𝑦(𝑥𝑡+1) − 𝑦(𝑥𝑡) ≈ ∫ 𝜑𝑘−1(𝑥)
𝑥𝑡+1

𝑥𝑡

𝑑𝑥                                                    (7) 

To ensure that the approximation is reasonable, let 𝜑𝑘−1(𝑥) be a polynomial such that 𝑘 =
4, such that the 3-step mAMT is achieved by interpolating the polynomial (𝜑3(𝑥))  using 

the Newton-Gregory backward: 

𝜑3(𝑥) = 𝑓𝑡+1 + 𝑝∇𝑓𝑡+1 +
𝑝(𝑝 + 1)

2!
∇2𝑓𝑡+1 +

𝑝(𝑝 + 1)(𝑝 + 2)

3!
∇3𝑓𝑡+1                       (8) 
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Where  𝑝 =
(𝑥−𝑥𝑛+1)

ℎ
, we integrate over 𝑥 from  𝑥𝑛 𝑡𝑜 𝑥𝑛+1. This is the similar to integrating 

over 𝑝 from −1 𝑡𝑜 0 (Kreyszig 2011). 

𝑦𝑡+1 − 𝑦𝑡 = ∫ (𝑓𝑡+1 + 𝑝∇𝑓𝑡+1 +
𝑝(𝑝 + 1)

2!
∇2𝑓𝑡+1

0

−1

+
𝑝(𝑝 + 1)(𝑝 + 2)

3!
∇3𝑓𝑡+1) ℎ 𝑑𝑝          (9) 

𝑦𝑡+1 − 𝑦𝑡 = [(𝑝𝑓𝑡+1 +
𝑝2

2
∇𝑓𝑡+1 + (

2𝑝3 + 3𝑝2

12
) ∇2𝑓𝑡+1

+ (
𝑝4 + 4𝑝3 + 4𝑝2

24
) ∇3𝑓𝑡+1) ℎ]

−𝟏

𝟎

(10) 

𝑦𝑛+1 − 𝑦𝑛 = ℎ (𝑓𝑛+1 −
1

2
∇𝑓𝑛+1 −

1

12
∇2𝑓𝑛+1 −

1

24
∇3𝑓𝑛+1)                          (11) 

We expand the following to have: 

∇𝑓𝑛+1 = 𝑓𝑛+1 − 𝑓𝑛                                                                       (𝑎) 

∇2𝑓𝑛+1 = 𝑓𝑛+1 − 2𝑓𝑛 + 𝑓𝑛−1                                                                 (𝑏) 

∇3𝑓𝑛+1 = 𝑓𝑛+1 − 3𝑓𝑛 + 3𝑓𝑛−1 − 𝑓𝑛−2                                                        (𝑐) 

Substituting for Eq. (a, b, and c) in Eq. (11) 

𝑦𝑛+1 − 𝑦𝑛

=  ℎ (𝑓𝑛+1 −
1

2
𝑓𝑛+1 +

1

2
𝑓𝑛 −

1

12
𝑓𝑛+1 +

1

6
𝑓𝑛 −

1

12
𝑓𝑛−1 −

1

24
𝑓𝑛+1 +

1

8
𝑓𝑛 +

1

8
𝑓𝑛−1

+
1

24
𝑓𝑛−2)                                                                                                                       (12) 

𝑦𝑛+1 − 𝑦𝑛 = ℎ (
24 − 12 − 2 − 1

24
) 𝑓𝑛+1 + (

24 + 4 + 3

24
) 𝑓𝑛 + (

−2 − 3

24
) 𝑓𝑛−1

+ (
1

24
) 𝑓𝑛−2  (13) 

𝑦𝑛+1 − 𝑦𝑛 =
ℎ

24
(9𝑓𝑛+1 + 19𝑓𝑛 − 5𝑓𝑛−1 + 𝑓𝑛−2)                                 (14) 

Note: The implicit LMM involves  𝑓𝑛+1 = 𝑓(𝑥𝑛+1, 𝑦𝑛+1)  at the right, so that it defines 

𝑦𝑛+1  implicitly (Kreyszig, 2011). We move also to say, let  𝑦𝑡 = 0, ℎ = 1, and  𝑦𝑡+1 = 𝑌𝑡. 

Let time intervals between observations be 𝑡, 𝑡 + 1, 𝑡 + 2, 𝑡 + 3, . . , 𝑡 − 𝑁. Then, time 

between two observations can be stated as ℎ = (𝑡 + 1) − (𝑡) = 1. Where 𝑡 is weekly, 

monthly or yearly data. Then; 

𝑌𝑡 =
1

24
(9𝑓𝑡+1 + 19𝑓𝑡 − 5𝑓𝑡−1 + 𝑓𝑡−2)                                            (15) 
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By means of simple moving average technique, we find the smoothened value (forecast) 

 𝑓𝑡+1 by taking the average of the three previous observations. Thus; 

𝑓𝑡+1 = (
𝑓𝑡 + 𝑓𝑡−1 + 𝑓𝑡−2

3
)                                                         (16) 

Substituting Eq. (16) in (15) with the order-3 moving average now imbedded in the scheme, 

we have: 

𝑌𝑡 =
1

24
(9 (

𝑓𝑡 + 𝑓𝑡−1 + 𝑓𝑡−2

3
) + 19𝑓𝑡 − 5𝑓𝑡−1 + 𝑓𝑡−2)                                     (17) 

𝑌𝑡 =
1

24
(3(𝑓𝑡 + 𝑓𝑡−1 + 𝑓𝑡−2) + 19𝑓𝑡 − 5𝑓𝑡−1 + 𝑓𝑡−2)                                       (18) 

𝑌𝑡 =
1

24
(22𝑓𝑡 − 2𝑓𝑡−1 + 4𝑓𝑡−2)                                                        (19) 

By dividing the right hand side by 2, and making 𝑡 = 𝑡 + 2, Eq. (19) becomes: 

𝑌𝑡+2 =
1

12
(11𝑓𝑡+2 − 𝑓𝑡+1 + 2𝑓𝑡)                                                   (20) 

𝑌𝑡  is the smoothened value at time 𝑡. 

𝑓𝑡 ∀ 𝑡 =  𝑡, 𝑡 − 1, 𝑡 − 2, are successive time series observations. 

The constant coefficients are the coefficient of data adjustment and the constant, 12, in the 

denominator is the averaging constant. 

The Eq. (20) above is therefore the new smoothing technique, which we called the 3-Step 

mAMT. 

 

 Procedure for updating the parameters of the Scheme 

 

Given a set of data 𝑓𝑡  ∀ 𝑡 = 1, 2, 3, 4, 5, … . . 𝑁  
The first smoothened value  𝑌𝑡+2 takes values such that; 

At 𝑡 = 1, (20) becomes: 

𝑌3 =
1

12
(11𝑓3 − 𝑓2 + 2𝑓1)                                                       (21) 

For the second smoothened value; 

At 𝑡 = 2,  (20) becomes: 

𝑌4 =
1

12
(11𝑓4 − 𝑓3 + 2𝑓2)                                                       (22) 

The procedure is continued in this manner. 

 

 Procedure for Obtaining the Smoothing 
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This technique removes any missing smoothened value (forecast) or be subjected to 

carrying over actual data to the forecast column for the first few vacant forecasts just like 

is in the case of other smoothing techniques (moving average techniques, exponential 

smoothing techniques and so on). We shall use the algorithm below to solve this problem. 

There shall be a forward and backward application of the 3-step mAMT to obtain 

smoothened values of the dataset and then an average of both (forward and backward) 

taken to obtain the final smoothened values. 

 

Illustration: let 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, … , 𝑥12be time series dataset. 

Using the 3-step mAMT, we demonstrate the procedure below: 

The forward smoothing is denoted by 𝑌𝑡+2
𝑓

  while the backward smoothing by  𝑌𝑡+2
𝑏  

𝑓𝑜𝑟𝑤𝑎𝑟𝑑:  𝑎𝑡 𝑡 = 1, 𝑌3
𝑓

=
1

12
(11𝑥3 − 𝑥2 + 2𝑥1)                                                (23) 

𝑓𝑜𝑟𝑤𝑎𝑟𝑑:  𝑎𝑡 𝑡 = 2, 𝑌4
𝑓

=
1

12
(11𝑥4 − 𝑥3 + 2𝑥2)                                                (24) 

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑:  𝑎𝑡 𝑡 = 1, 𝑌10
𝑏 =

1

12
(11𝑥10 − 𝑥11 + 2𝑥12)                                         (25) 

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑:  𝑎𝑡 𝑡 = 2, 𝑌9
𝑏 =

1

12
(11𝑥9 − 𝑥10 + 2𝑥11)                                           (26) 

 

 

Table 1 

Method Demonstration using variables. 

Serial 

Number 

Observation Forward mAMT 

3-step 

Backward mAMT 

3-step 

Average = 

Smoothened Value 

1. 𝑥1  𝑌12
𝑏  𝑌12

𝑏  

2. 𝑥2  𝑌11
𝑏  𝑌11

𝑏  

3. 𝑥3 𝑌3
𝑓
 𝑌10

𝑏  (𝑌3
𝑓

+ 𝑌10
𝑏 )/2 

4 𝑥4 𝑌4
𝑓
 𝑌9

𝑏 (𝑌4
𝑓

+ 𝑌9
𝑏)/2 

5. 𝑥5 𝑌5
𝑓
 𝑌8

𝑏 (𝑌5
𝑓

+ 𝑌8
𝑏)/2 

6. 𝑥6 𝑌6
𝑓
 𝑌7

𝑏 (𝑌6
𝑓

+ 𝑌7
𝑏)/2 

7. 𝑥7 𝑌7
𝑓
 𝑌6

𝑏 (𝑌7
𝑓

+ 𝑌6
𝑏)/2 

8. 𝑥8 𝑌8
𝑓
 𝑌5

𝑏 (𝑌8
𝑓

+ 𝑌5
𝑏)/2 

9. 𝑥9 𝑌9
𝑓
 𝑌4

𝑏 (𝑌9
𝑓

+ 𝑌4
𝑏)/2 
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10. 𝑥10 𝑌10
𝑓

 𝑌3
𝑏 (𝑌10

𝑓
+ 𝑌3

𝑏)/2 

11. 𝑥11 𝑌11
𝑓

  𝑌11
𝑓

 

12. 𝑥12 𝑌12
𝑓

  𝑌12
𝑓

 

 

Efficiency Comparisons 

 

 Comparison of mAMT Order-4 to Simple Moving Average (SMA) and Simple 

Exponential Smoothing (SES) 

 

 In this paper, we use the dataset of Obite et al. (2021) to show the efficiency of the 

proposed 3-step mAMT smoothing technique and compare same with the simple moving 

average (SMA) order-3 and simple exponential smoothing techniques (SES), with the SES 

having a smoothing constant of  𝛼 = 0.8. 

 

 Measuring Model Performance 

   

 In practice, it is mostly recommended to test the efficiency of smoothing techniques 

with real datasets so as to determine its performance characteristics by way of comparison 

with the other actual data.  This paper utilizes the SMA and SES on the same datasets and 

a comparison of the performances of the various models have been determined using some 

common indicators. There are various determinants and measures for smoothing technique 

best fit, but some of the common indicators are the Mean absolute error (MAE), Mean 

squared error (MSE), Root mean squared error (RMSE) or Mean absolute percentage error 

(MAPE) (Ostertagova 2012 and Oyewale et al. 2013): 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑡|

𝑛

𝑡=1

                                                                 (27) 

𝑀𝑆𝐸 =
1

𝑛
∑ 𝑒𝑡

2

𝑛

𝑡=1

                                                                 (28) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑡

2

𝑛

𝑡=1

                                                  (29) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑒𝑡|

𝑓𝑡

. 100%                                                 (30) 
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Results  

 

Table 2 

The 3-step mAMT, SMA, and SES smoothened values. 

Serial Actual Forward 

mAMT 

3-step 

Backward 

mAMT 

3-step 

Average = 

Smoothened 

Value 

SMA 

Order-3 

SES 

𝛼
= 0.8 

1. 2.25  2.249 2.249 *2.25 *2.25 

2. 2.32  2.338 2.338 *2.32 2.306 

3. 2.28 2.272 2.288 2.28 2.283 2.285 

4. 2.41 2.406 2.41 2.408 2.337 2.385 

5. 2.39 2.37 2.391 2.38 2.36 2.389 

6. 2.4 2.403 2.397 2.4 2.4 2.398 

7. 2.4 2.398 2.392 2.395 2.397 2.4 

8. 2.38 2.382 2.38 2.381 2.393 2.384 

9. 2.34 2.347 2.335 2.341 2.373 2.349 

10. 2.36 2.365 2.355 2.36 2.36 2.358 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

168. 2.07 2.052 2.068 2.06 2.033 2.066 

169. 2.04 2.043 1.992 2.017 2.06 2.045 

170. 2.04 2.045 2.006 2.025 2.05 2.041 

171. 1.75 1.774 1.745 1.76 1.943 1.808 

172. 1.69 1.743 1.683 1.713 1.827 1.714 

173. 1.69 1.7 1.687 1.693 1.71 1.695 

174. 1.65 1.653 1.632 1.643 1.677 1.699 

175. 1.65 1.657 1.653 1.655 1.663 1.652 

176. 1.54 1.549  1.549 1.613 1.562 

177. 1.61 1.623  1.623 1.6 1.6 

 

 Application of the Method 

 

 The proposed time series technique is adaptive and adequate for time series datasets 

with very high fluctuation. The application of the 3-step mAMT can be used to provide 

smoothing for time series data without the application of the backward and averaging 

technique that was introduced in table 1 and 2. Without applying the backward and 
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averaging procedures, the 3-step mAMT can be compared with moving average and 

exponential smoothing techniques and great results will still be posted as seen in column 3 

of table 2. This will only result to missing smoothing values for the first 2 entries just as is 

in the case of other smoothing techniques. But, with the approach applied in this paper, the 

problems of carrying over actual data and placing them as startup smoothing values as seen 

in column 6 and 7 (denoted with “*”) has been eliminated. 

 

Table 3 

Performance measurement of 3-step mAMT, SMA, and SES smoothing techniques. 

Serial 3-step mAMT  SMA Order-3 SES (𝛼 = 0.8) 

𝑅2 0.9962156 0.8898824 0.9904286 

MAE 0.0111554 0.0583616 0.0164302 

MSE 0.0001997 0.0058098 0.0005050 

RMSE 0.0000998 0.0029049 0.0002525 

MAPE 0.5352254 2.7996229 0.7935339 

 

Discussion and Conclusion 

 

 Discussion 

 

 The objective of this paper is to provide a very compatible time series smoothing 

technique for time series data of low, moderate and high fluctuations (white noise). The 

paper applied the Stone-Weierstrass Theorem to derive the original Order-4 Adams-

Moulton method and modifying the method to be able to fit in time series data. The 

technique developed is highly flexible and efficient method of analyzing time series data 

and understanding the degree of noise presence in the data. The paper also utilized a method 

of forward and backward application of the derived smoothing technique on the data and 

then taking the average in such a way that no missing smoothened value would be recorded. 

The paper also compared the proposed technique to the moving average of order-3 

smoothing technique. A demonstration of the forward and backward application of the 

technique is demonstrated on Table 1. 

 

 Conclusion 

 

 In this paper, a new time series smoothing technique derived from the modification 

of the Adams-Moulton Oder-4 numerical method was proposed. The new time series 
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smoothing technique proposed in this paper was called mAMT Order-4. The mAMT 

Order-4 was adjusted to perform a backward smoothing procedure starting from the last 

observation to the top as demonstrated in (23) and (24) and Tables 1 and 2. In the 

calculation, the original mAMT Order-4 was called the forward smoothing as seen in (21) 

and (22). The mAMT Order-4 was compared with the simple moving average (SMA) and 

the simple exponential smoothing (SES) techniques and results of the smoothing is shown 

in Table 2. Statistical performance measurements between the techniques is shown in 

Tables 3. The proposed mAMT Order-4 is very adequate and performed measurably better 

than the others as shown in Table 3. 
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