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Abstract 

Malaria and Hepatitis B Virus (HBV) are diseases that poses serious challenges health 

wise in the world especially in countries that are developing. Both diseases belong to 

the most widespread diseases, and therefore, a major public health concerns in tropical 

developing countries. In this research, a mathematical model showing dynamics of co-

infection of Malaria and HBV diseases was developed using ordinary differential 

equations which consists of 9 compartments. The study covers the model’s future 

solution positivity, model invariant region and disease-free points. The next generation 

matrix method was used to compute the basic reproduction number,ℛ0, for the 

coinfection model using and the disease free equilibrium point and was shown to be 

Locally Asymptotically Stable if ℛ0 < 1 and unstable if  ℛ0 > 1. Then, the coinfection 

model was extended to optimal control by incorporating four control interventions. The 

optimality system was obtained using the Pontryagin’s maximum principle. Simulation 

of the optimality system was done and five strategies was proposed to check the effect 

of the controls. First, prevention only for both diseases was considered, and the result 

shows that, applying prevention control has a great impact in bringing down the 

expansion of malaria, HBV infection, and their coinfection in the specified period of 

time. Other approaches are prevention effort for malaria and treatment effort for HBV 

infection, prevention effort for HBV infection and treatment effort for malaria, 

treatment effort for both diseases, and using all interventions. We obtained that the 

listed strategies were effective in minimizing the expansion of Malaria HBV 

coinfectious population in the specified period of time. 

Keywords: Co-Infection, Malaria, Hepatitis B Virus. 

 

Introduction 

Infectious diseases have produced enormous destruction and death of humans through 

the ages, most recently, they become threats to countries that are developing 

(Greenhalgh, Samanta, Sardar, Bhattacharya, & Chattopadhyay, 2015). Malaria disease 

is vector borne which is treatable and also can be prevented. Even though malaria can 

be prevented, deaths of over 627,000 people of which most of them are children in 

Africa have been caused by it in the year 2012 (WHO W. H., 2013). There was an 

appeal in October 2007 for effort to be increased globally towards the eradication of 

Malaria and over 25 countries that are previously endemic have entered either the 

elimination or pre-elimination phase of this global eradication. Malaria spread is 

extensive in tropical and subtropical regions which include Asia, Africa, Latin America, 

some parts of Europe and the Middle East. Though, death cases due to Malaria are 

generally reported in the sub-Saharan Africa especially 30 countries within sub- 

Saharan Africa which are responsible for 90% of malaria deaths globally. In Africa, 

after every 30 seconds the disease causes the death of a child and globally, above 2,000 

lives of young people are lost every day. Amid the outpatient visits, malaria is 

responsible for 60%, and 30% of children below 5 years who are hospitalized in Nigeria 

(Olaniyi & Obabiyi, 2013). Hepatitis B is a potentially life-threatening infection of the 

liver caused by the hepatitis B virus (HBV) and as well a major health problem globally. 

HBV, an hepadnavirus with a circular genome composed of partially double-stranded 
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DNA, replicates through an RNA intermediate form by reverse transcription. The 

infection has caused epidemics in parts of Asia and Africa. About 2 billion infections 

have been recorded globally and about 360 million people are living with chronic HBV 

infection. An estimated deaths of about 600,000 is recorded each year due to the acute 

or chronic consequences of hepatitis B. HBV mono infection is a serious and common 

infectious disease of the liver. World Health Organization (WHO) in 2009 reported 

HBV to infect nearly 2 billion people around the world. Activities that cause it include 

unprotected sex, blood transfusion, tattoo, and sharing unprotected needles and blades 

predisposed by individuals with the infection (Gideon K. H., et al., 2018). The hepatitis 

B virus is spread through the blood, semen, or other body fluid of infected individual 

get into the body of a person who is not infected. The aim of this study is to develop a 

mathematical model to study the dynamics of Malaria-HBV co-infection. 

Model Formulation 

The model is a compartmental model with sub compartments. The total human 

population (𝑁ℎ) which is divided into; susceptible humans (𝑆ℎ), individuals infected 

with Malaria only (𝐼ℎ𝑚), individuals that are infected with HBV only (𝐼ℎ𝐻), individuals 

that are infected with both Malaria and HBV (𝐼ℎ𝑚𝐻), and those that have recovered from 

Malaria, HBV, and both Malaria and HBV, respectively, (𝑅ℎ𝑚), (𝑅ℎ𝐻), and (𝑅ℎ𝑚𝐻). The 

total vector population (𝑁𝑣) which is divided int; susceptible mosquitos (𝑆𝑣) and 

infected mosquitos (𝐼𝑣). These two different classes of population therefore give us the 

following equations: 

𝑁ℎ = 𝑆ℎ + 𝐼ℎ𝑚 + 𝐼ℎ𝐻 + 𝐼ℎ𝑚𝐻 + 𝑅ℎ𝑚 + 𝑅ℎ𝐻 + 𝑅ℎ𝑚𝐻     . . . (1) 

𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣           . . . 

(2) 

For the human population, the susceptible compartment increase by recruitment rate of  

Λℎ and also from Malaria recovered compartment with rate of  𝛾1, HBV recovered 

compartment with rate of  𝛾2 and from co-infectious recovered compartment with rate 

of  𝛾3. Forces of infection of Malaria and HBV are 𝛼1 and 𝛼2 respectively where 𝛼1 =
𝛼𝑚ℎ𝑏𝑚𝐼𝑣

𝑁ℎ
 and 𝛼2 = 𝛼𝐻(𝐼ℎ𝐻 + 𝐼ℎ𝑚𝐻). Since the liver condition in malaria infected humans 

increase the susceptibility of humans to HBV infection, it means that, the rate of 

infection of humans in 𝐼ℎ𝑚 is higher than those in 𝑆ℎ, so we introduce a parameter 𝜓 >
1 to change the HBV infection rate of 𝐼ℎ𝑚 from 𝛼2  to 𝜓𝛼2.  Malaria – only recovered 

compartment is increased by the rate, 𝛽1. HBV – only compartment is increased by the 

rate, 𝛽2  while the coinfection recovered compartments increase with a rate of  𝛿. In the 

coinfectious recovered compartment, individuals either recovered only from Malaria, 

HBV, or from both diseases with a probability of 𝛿𝑒,𝛿𝑓(1 − 𝑒) or 𝛿(1 − 𝑓)(1 − 𝑒), 
respectively, where 0 ≤ 𝑒 ≤ 1 and 0 ≤ 𝑓 ≤ 1. The natural death rate is denoted by  𝜇ℎ 

and Malaria – causing death rate and HBV – causing death rate are represented by 𝑑1 
and 𝑑2, respectively.  

For the mosquito population, the susceptible compartment increase by a constant 

recruitment rate of Λ𝑣 and decrease by the mosquito death rate represented by 𝜇𝑣. While 

new infected mosquitoes are generated at a rate of 𝜉𝑣 =
𝛼ℎ𝑚𝑏𝑚

𝑁ℎ
(𝐼ℎ𝑚), and are removed 

from the compartment through the mosquito death rate. All parameters described in this 

model are assumed to be nonnegative. 
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Malaria – HBV Co-infection Model Equation  

The following system of Ordinary Differential Equations (ODEs) capture the dynamics 

of the coinfection model. 
𝑑𝑆ℎ
𝑑𝑡

= Λℎ + 𝛾1𝑅ℎ𝑚 + 𝛾2𝑅ℎ𝐻 + 𝛾3𝑅ℎ𝑚𝐻 − (𝛼1 + 𝛼2 + 𝜇ℎ)𝑆ℎ                                            

𝑑𝐼ℎ𝑚
𝑑𝑡

= 𝛼1𝑆ℎ − 𝜓𝛼2𝐼ℎ𝑚 − (𝜇ℎ + 𝑑1)𝐼ℎ𝑚 − 𝛽1𝐼ℎ𝑚                                                                    

𝑑𝐼ℎ𝐻
𝑑𝑡

= 𝛼2𝑆ℎ − 𝛼1𝐼ℎ𝐻 − (𝜇ℎ + 𝑑2)𝐼ℎ𝐻 − 𝛽2𝐼ℎ𝐻                                                                  

𝑑𝐼ℎ𝑚𝐻
𝑑𝑡

= 𝜓𝛼2𝐼ℎ𝑚 + 𝛼1𝐼ℎ𝐻 − (𝜇ℎ + 𝑑1 + 𝑑2)𝐼ℎ𝑚𝐻 − 𝛿𝐼ℎ𝑚𝐻                                            

𝑑𝑅ℎ𝑚
𝑑𝑡

= (β1)𝐼ℎ𝑚 + (𝛿𝑒)𝐼ℎ𝑚𝐻 − (𝜇ℎ + 𝛾1)𝑅ℎ𝑚                                                                    

𝑑𝑅ℎ𝐻
𝑑𝑡

= (β2)𝐼ℎ𝐻 + (𝛿𝑓(1 − 𝑒))𝐼ℎ𝑚𝐻 − (𝜇ℎ + 𝛾2)𝑅ℎ𝐻                                                        

𝑑𝑅ℎ𝑚𝐻
𝑑𝑡

= (𝛿(1 − 𝑓)(1 − 𝑒))𝐼ℎ𝑚𝐻 − (𝜇ℎ + 𝛾3)𝑅ℎ𝑚𝐻                                                         

𝑑𝑆𝑣
𝑑𝑡

= Λ𝑣 − (𝜇𝑣 + 𝜉𝑣)𝑆𝑣                                                                                                             

𝑑𝐼𝑣
𝑑𝑡
= 𝜉𝑣𝑆𝑣 − 𝜇𝑣𝐼𝑣                                                                                                                      

   

               

Initial conditions of system (3) are 
𝑆ℎ(0) ≥ 0

𝐼ℎ𝑚(0) ≥ 0

𝐼ℎ𝐻(0) ≥ 0

𝐼ℎ𝑚𝐻(0) ≥ 0

𝑅ℎ𝑚(0) ≥ 0

𝑅ℎ𝐻(0) ≥ 0

𝑅ℎ𝑚𝐻(0) ≥ 0

𝑆𝑣(0) ≥ 0

𝐼𝑣(0) ≥ 0

                      

From the above system of differential equations, the following flow diagram (Figure 

1) of the model is obtained: 

 

 

. . . (3) 

. . . (4) 
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Figure 1: A schematic diagram of co-infection model. 
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Malaria HBV Coinfection Model Invariant Region 

Here, it is shown that the Malaria HBV coinfection model is epidemiologically and 

mathematically well-posed and such a solution exist and is positive in an invariant region. 

To get the invariant region in which the solution of the model is bounded, we consider the 

total population 

𝑁ℎ = 𝑆ℎ + 𝐼ℎ𝑚 + 𝐼ℎ𝐻 + 𝐼ℎ𝑚𝐻 + 𝑅ℎ𝑚 + 𝑅ℎ𝐻 + 𝑅ℎ𝑚𝐻  and  𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣  . . . (5) 

Now, 
𝑑𝑁ℎ
𝑑𝑡

=
𝑑𝑆ℎ
𝑑𝑡

+
𝑑𝐼ℎ𝑚
𝑑𝑡

+
𝑑𝐼ℎ𝐻
𝑑𝑡

+
𝑑𝐼ℎ𝑚𝐻
𝑑𝑡

+
𝑑𝑅ℎ𝑚
𝑑𝑡

+
𝑑𝑅ℎ𝐻
𝑑𝑡

+
𝑑𝑅ℎ𝑚𝐻
𝑑𝑡

 

         = Λh − 𝜇ℎ𝑁ℎ − 𝑑1(𝐼ℎ𝑚 + 𝐼ℎ𝑚𝐻) − 𝑑2(𝐼ℎ𝐻 + 𝐼ℎ𝑚𝐻)                     . . . (6) 

Similarly 
𝑑𝑁𝑣

𝑑𝑡
= Λ𝑣 − 𝜇𝑣𝑁𝑣         . . . (7) 

Assuming 𝑑1 = 𝑑2 = 0 and letting = (
𝑁ℎ
𝑁𝑣
) , Λ = (

Λℎ
Λ𝑣
)   and  𝜇𝑎 = (

𝜇ℎ
0

0
𝜇𝑣
), we obtain 

𝑑𝑁

𝑑𝑡
≤ Λ − 𝜇𝑎𝑁                                               . . . (8) 

Solving equation (8) we obtain 

Ω = {(Sh, Ihm, IhH, IhmH, Rhm, RhH, RhmH, 𝑆𝑣, 𝐼𝑣) ∈ ℝ
9, 0 ≤ N ≤

Λ

𝜇𝑎
}                      . . . (9) 

which is the invariant region of the model. 

Theorem 1 (Positivity of Solution): If  

𝑆ℎ0 > 0, 𝐼ℎ𝑚0 > 0, 𝐼ℎ𝐻0 > 0, 𝐼ℎ𝑚𝐻0 > 0, 𝑅ℎ𝑚0 > 0, 𝑅ℎ𝐻0 > 0, 𝑅ℎ𝑚𝐻0 > 0, 𝑆𝑣0 > 0, 𝐼𝑣0
> 0 , 

then all the solution sets 

(𝑆ℎ(𝑡), 𝐼ℎ𝑚(𝑡), 𝐼ℎ𝐻(𝑡), 𝐼ℎ𝑚𝐻(𝑡), 𝑅ℎ𝑚(𝑡), 𝑅ℎ𝐻(𝑡), 𝑅ℎ𝑚𝐻(𝑡), 𝑆𝑣(𝑡), 𝐼𝑣(𝑡)) 
are positive for future time. 

Proof: To prove by contradiction, firstly, take 𝑡𝑎 as  

𝑡𝑎 = sup{𝑡 > 0: 𝑆ℎ(𝜏) > 0,  𝐼ℎ𝑚(𝜏) > 0, 𝐼ℎ𝐻(𝜏) > 0, 𝐼ℎ𝑚𝐻(𝜏) > 0, 𝑅ℎ𝑚(𝜏) >
0,  𝑅ℎ𝐻(𝜏) > 0, 𝑅ℎ𝑚𝐻(𝜏) > 0, 𝑆𝑣(𝜏) > 0, 𝐼𝑣(𝜏) > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ [0, 𝑡]}   

 . . . (10) 
Now consider   

𝑆ℎ0 ≥ 0, 𝐼ℎ𝑚0 ≥ 0, 𝐼ℎ𝐻0 ≥ 0, 𝐼ℎ𝑚𝐻0 ≥ 0, 𝑅ℎ𝑚0 ≥ 0, 𝑅ℎ𝐻0 ≥ 0, 𝑅ℎ𝑚𝐻0 ≥ 0, 𝑆𝑣0 ≥ 0, 𝐼𝑣0 ≥

0;  

thus, 𝑡𝑎 > 0.  

If 𝑡𝑎 < ∞, then necessarily, 

𝑆ℎ  𝑜𝑟 𝐼ℎ𝑚  𝑜𝑟 𝐼ℎ𝐻  𝑜𝑟 𝐼ℎ𝑚𝐻  𝑜𝑟 𝑅ℎ𝑚  𝑜𝑟  𝑅ℎ𝐻 𝑜𝑟  𝑅ℎ𝑚𝐻  𝑜𝑟 𝑆𝑣  𝑜𝑟 𝐼𝑣 is equal to zero at 𝑡𝑎. 

From equation (3), we have 
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𝑑𝑆ℎ(𝑡)

𝑑𝑡
= Λℎ + 𝛾1𝑅ℎ𝑚 + 𝛾2𝑅ℎ𝐻 + 𝛾3𝑅ℎ𝑚𝐻 − (𝛼1 + 𝛼2 + 𝜇ℎ)𝑆ℎ(𝑡)      . . . (11) 

Equation (11) can be solved using variation formula at 𝑡𝑎: 

𝑆ℎ(𝑡𝑎) = 𝑆ℎ(0)𝑒𝑥𝑝 [−∫(𝛼1 + 𝛼2 + 𝜇ℎ)(𝑠)𝑑𝑠

𝑡𝑎

0

]

+ ∫(Λℎ + 𝛾1𝑅ℎ𝑚 + 𝛾2𝑅ℎ𝐻 + 𝛾3𝑅ℎ𝑚𝐻)𝑒𝑥𝑝 [−∫(𝛼1 + 𝛼2 + 𝜇ℎ)(𝜏)𝑑𝜏

𝑡𝑎

0

] 𝑑𝑠

𝑡𝑎

0

 

           . . . (12) 

Accordingly, all the variables are nonnegative in [0, 𝑡𝑎]; then 𝑆ℎ(𝑡𝑎) > 0.  

In a similar manner, we can show 

𝐼ℎ𝑚(𝑡𝑎) > 0, 𝐼ℎ𝐻(𝑡𝑎) > 0, 𝐼ℎ𝑚𝐻(𝑡𝑎) > 0, 𝑅ℎ𝑚(𝑡𝑎) > 0, 𝑅ℎ𝑚𝐻(𝑡𝑎) > 0, 𝑅ℎ𝑚𝐻(𝑡𝑎) >
0 , 𝑆𝑣(𝑡𝑎) > 0 𝑎𝑛𝑑 𝐼𝑣(𝑡𝑎) > 0  which is a contradiction. Hence 𝑡𝑎 = ∞ .                    ∎ 

Existence of Disease – Free Equilibrium (DFE) Point for the Coinfection Model. 

At Disease – Free Equilibrium point, (𝐸0),  none of the diseases exists. The disease-free 

equilibrium point there is no Malaria HBV coinfection. At Disease-free Equilibrium 

𝐸0;  𝐼ℎ𝑚 =  𝐼ℎ𝐻 =  𝐼ℎ𝑚ℎ = 𝐼𝑣 = 0. Therefore, eliminating 𝐼ℎ𝑚,  𝐼ℎ𝐻 ,  𝐼ℎ𝑚ℎ  and 𝐼𝑣  from 

equation (1). Thus, equating the right hand side of the system of equation (1) to zero, we 

get 

Λℎ + 𝛾1𝑅ℎ𝑚 + 𝛾2𝑅ℎ𝐻 + 𝛾3𝑅ℎ𝑚𝐻 − (𝛼1 + 𝛼2 + 𝜇ℎ)𝑆ℎ = 0                . . . 

(13) 

−(𝜇ℎ + 𝛾1)𝑅ℎ𝑚 = 0         . . . 

(14) 

−(𝜇ℎ + 𝛾2)𝑅ℎ𝐻 = 0         . . . (15) 

−(𝜇ℎ + 𝛾3)𝑅ℎ𝑚𝐻 = 0         . . . 

(16) 

Λ𝑣 − (𝜇𝑣 + 𝜉𝑣)𝑆𝑣 = 0        . . . (17) 

From equations (14), (15) and (16) we get 𝑅ℎ𝑚 = 𝑅ℎ𝐻 = 𝑅ℎ𝑚ℎ = 0, and since 𝛼1 = 𝛼2 =
𝜉𝑣 = 0 at DFE point we have 

𝐸0 = (Sh0 , Ihm0 , IhH0 , IhmH0 , Rhm0 , RhH0 , RhmH0 , 𝑆𝑣0 , 𝐼𝑣0) = (
Λℎ

𝜇ℎ
, 0,0,0,0,0,0,

Λ𝑣

𝜇𝑣
, 0) . . . 

(18) 

Basic Reproduction Number for the Malaria HBV Coinfection Model 
The basic reproduction number usually denoted by ℛ0 for the Malaria HBV Coinfection 

Model was obtained using the next generation method as applied by (Diekmann, 

Hoesterbeek, & Roberts, 2010), (Agusto & Khan, 2018) and (Van den Driessche & 
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Watmough, 2002). From the model equations, using their approach we first rearrange the 

model equations beginning with the infective classes to obtain the following equations                                           
𝑑𝐼ℎ𝑚
𝑑𝑡

= 𝛼1𝑆ℎ − 𝜓𝛼2𝐼ℎ𝑚 − (𝜇ℎ + 𝑑1)𝐼ℎ𝑚 − 𝛽1𝐼ℎ𝑚                                                                    

𝑑𝐼ℎ𝐻
𝑑𝑡

= 𝛼2𝑆ℎ − 𝛼1𝐼ℎ𝐻 − (𝜇ℎ + 𝑑2)𝐼ℎ𝐻 − 𝛽2𝐼ℎ𝐻                                                                  

𝑑𝐼ℎ𝑚𝐻
𝑑𝑡

= 𝜓𝛼2𝐼ℎ𝑚 + 𝛼1𝐼ℎ𝐻 − (𝜇ℎ + 𝑑1 + 𝑑2)𝐼ℎ𝑚𝐻 − 𝛿𝐼ℎ𝑚𝐻                                            
                                                                                                                                                                              

𝑑𝐼𝑣
𝑑𝑡
= 𝜉𝑣𝑆𝑣 − 𝜇𝑣𝐼𝑣                                                                                                                        

                                                                                                                    

   

               

Using their approach, we have;  

𝐹 =

(

 
 

0
0

𝜓𝛼𝐻(𝐼ℎ𝐻 + 𝐼ℎ𝑚𝐻)
𝛼ℎ𝑚𝑏𝑚𝑆𝑣

𝑁ℎ

0
𝛼𝐻𝑆ℎ
𝛼𝑚ℎ𝑏𝑚𝐼𝑣

𝑁ℎ

0

0
𝛼𝐻𝑆ℎ
𝜓𝛼𝐻𝐼ℎ𝑚
𝛼ℎ𝑚𝑏𝑚𝑆𝑣

𝑁ℎ

𝛼𝑚ℎ𝑏𝑚𝑆𝑣

𝑁ℎ

0
𝛼𝑚ℎ𝑏𝑚𝐼ℎ𝐻

𝑁ℎ

0 )

 
 
;   . . . (20) 

 

𝑉 =

(

 
 
𝛽1 + 𝜇ℎ + 𝑑1

0
0
0

𝜓𝛼𝐻𝐼ℎ𝑚
𝛼ℎ𝑚𝑏𝑚𝐼𝑣
𝑁ℎ

+ 𝛽2 + 𝜇ℎ + 𝑑2

0
0

𝜓𝛼𝐻𝐼ℎ𝑚
0

𝛿 + 𝜇ℎ + 𝑑1 + 𝑑2
0

0
𝛼𝑚ℎ𝑏𝑚𝐼ℎ𝐻

𝑁ℎ
0
𝜇𝑣 )

 
 

 

          . . . (21) 

We now obtain 𝐹 and 𝑉 at the DFE point 𝐸0 = (
Λℎ

𝜇ℎ
, 0,0,0,0,0,0,

Λ𝑣

𝜇𝑣
, 0) 

 

𝐹|𝐸0 =

(

 
 

0
0
0

𝛼ℎ𝑚𝑏𝑚
Λ𝑣

𝜇𝑣

𝜇ℎ

Λℎ

0
𝛼𝐻Λℎ

𝜇ℎ

0
0

0
𝛼𝐻Λℎ

𝜇ℎ

0
𝛼ℎ𝑚𝑏𝑚

𝛼𝑚ℎ𝑏𝑚
0
0
0

)

 
 
;    . . . (22) 

 

𝑉|𝐸0 = (

𝛽1 + 𝜇ℎ + 𝑑1
0
0
0

0
𝛽2 + 𝜇ℎ + 𝑑2

0
0

0
0

𝛿 + 𝜇ℎ + 𝑑1 + 𝑑2
0

0
0
0
𝜇𝑣

)  . . . (23) 
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And we have 

𝑉−1|𝐸0 =

(

 

1

 𝛽1+𝜇ℎ+𝑑1
 

0
0
0

0
1

𝛽2+𝜇ℎ+𝑑2

0
0

0
0
1

𝛿+𝜇ℎ+𝑑1+𝑑2

0

0
0
0
1

𝜇𝑣)

    . . . (24) 

and, 

𝐹𝑉−1|𝐸0 =

(

  
 

0
0
0

𝛼ℎ𝑚𝑏𝑚

(𝛽1+𝜇ℎ+𝑑1)

Λ𝑣

𝜇𝑣

𝜇ℎ

Λℎ

0
𝛼𝐻

Λℎ
𝜇ℎ

𝛽2+𝜇ℎ+𝑑2

0
0

0
𝛼𝐻

Λℎ
𝜇ℎ

𝛿+𝜇ℎ+𝑑1+𝑑2

0
𝛼ℎ𝑚𝑏𝑚

𝛿+𝜇ℎ+𝑑1+𝑑2

𝛼𝑚ℎ𝑏𝑚

𝜇𝑣

0
0
0
)

  
 

  . . . (25) 

Therefore, ℛ0 = 𝜌( 𝐹 𝑉
−1 ) is spectral radius of  𝐹 𝑉−1. 

ℛ0 = 𝜌(𝐹𝑉
−1) = √

𝛼𝑚ℎ𝑏𝑚

𝜇𝑣
.

𝛼ℎ𝑚𝑏𝑚

(𝛽1+𝜇ℎ+𝑑1)

Λ𝑣

𝜇𝑣

𝜇ℎ

Λℎ
     . . . (26)  

 

Stability Analysis of the DFE Point for Malaria HBV Coinfection Model 
The following theorem describes the local asymptotical stability at the disease free case:  

Theorem 2. If ℛ0 < 1, then the equilibrium point 𝐸0 of the model (3) is Locally 

Asymptotically Stable (LAS) and unstable if ℛ0 > 1.  

Proof. Assume ℛ0 < 1, 

Evaluating the Jacobian matrix for the model (3) at the DFE point we get, 

 

           

          . . . (27) 

 

 

 

Where 

𝑗11 = −(𝜇ℎ + 𝛼1 + 𝛼2)       . . . (28) 

𝑗22 = −(𝛽1 + 𝜇ℎ + 𝑑1)       . . . (29) 

𝑗33 = −(𝛽2 + 𝜇ℎ + 𝑑2)       . . . (30) 

𝑗44 = −(𝛿 + 𝜇ℎ + 𝑑1 + 𝑑2)       . . . (31) 

𝑗55 = −𝛾1         . . . (32) 

𝑗66 = −(𝛾2 + 𝜇ℎ)        . . . (33) 

𝑗77 = −𝜇ℎ         . . . (34) 

𝑗88 = −𝜇𝑣         . . . (35) 
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𝑗99 = −𝜇𝑣         . . . (36) 

For the DFE to be LAS, all eigenvalues of the Jacobian matrix evaluated at the DFE point 

must have negative real parts. To find the eigenvalues, we need the characteristics equation 

which is, 
(𝑗11 − 𝜆)(𝑗33 − 𝜆)(𝑗44 − 𝜆)(𝑗55 − 𝜆)(𝑗66 − 𝜆)(𝑗77 − 𝜆)(𝑗88 − 𝜆)(𝑎2𝜆

2 + 𝑎1𝜆 + 𝑎0) = 0  

          . . . (37) 

Where 

𝑎2 = 1; 𝑎1 = −(𝑗22 + 𝑗99); 𝑎0 = (𝑗22𝑗99 − 𝛼ℎ𝑚𝑏𝑚
Λ𝑣𝜇ℎ

𝜇𝑣Λℎ
∙ 𝛼𝑚ℎ𝑏𝑚)  . . . (38) 

We will now show that all the eigenvalues have negative real parts. 

Seven eigenvalues are obtained from the seven linear factors of the characteristics equation, 

these are:  

𝜆 = 𝑗11 = −(𝜇ℎ + 𝛼1 + 𝛼2) < 0    since (𝜇ℎ + 𝛼1 + 𝛼2) > 0  . . . (39) 

𝜆 = 𝑗33 = −(𝛽2 + 𝜇ℎ + 𝑑2) < 0    since (𝛽2 + 𝜇ℎ + 𝑑2) > 0  . . . (40) 

𝜆 = 𝑗44 = −(𝛿 + 𝜇ℎ + 𝑑1 + 𝑑2) < 0    since (𝛿 + 𝜇ℎ + 𝑑1 + 𝑑2) > 0 . . . (41) 

𝜆 = 𝑗55 = −𝛾1 < 0    since 𝛾1 > 0      . . . (42) 

𝜆 = 𝑗66 = −(𝛾2 + 𝜇ℎ) < 0    since (𝛾2 + 𝜇ℎ) > 0    . . . (43) 

𝜆 = 𝑗77 = −𝜇ℎ < 0    since 𝜇ℎ > 0      . . . (44) 

𝜆 = 𝑗88 = −𝜇𝑣 < 0    since 𝜇𝑣 > 0      . . . (45) 

The remaining 2 eigenvalues can be obtained from the quadratic equation  

(𝑎2𝜆
2 + 𝑎1𝜆 + 𝑎0) = 0        . . . (46) 

Where 

𝑎2 = 1; 𝑎1 = −(𝑗22 + 𝑗99); 𝑎0 = (𝑗22𝑗99 − 𝛼ℎ𝑚𝑏𝑚
Λ𝑣𝜇ℎ

𝜇𝑣Λℎ
∙ 𝛼𝑚ℎ𝑏𝑚)  . . . (47) 

We use the Routh – Hurwitz criteria. 

The Routh – Hurtwiz array for (𝑎2𝜆
2 + 𝑎1𝜆 + 𝑎0) is 

𝜆2

𝜆1

𝜆0
|

𝑎2
𝑎1
𝑎0

𝑎0
0  

If the signs of 𝑎2, 𝑎1 and 𝑎0 are the same, then we conclude that all eigenvalues for 
(𝑎2𝜆

2 + 𝑎1𝜆 + 𝑎0) have negative real parts. 

To prove: 𝒂𝟐 > 𝟎  and 𝒂𝟏 > 𝟎: 

Proof: 

𝑎2 = 1 > 0         . . . (48) 

𝑎1 = −(𝑗22 + 𝑗99) 
     = −[−(𝛽1 + 𝜇ℎ + 𝑑1) + (−𝜇𝑣)] = 𝛽1 + 𝜇ℎ + 𝑑1 + 𝜇𝑣 > 0     . . . (49) 

To prove: 𝒂𝟎 > 𝟎 

Proof: 
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𝑎0 = (𝛽1 + 𝜇ℎ + 𝑑1) ∙ 𝜇𝑣 − 𝛼ℎ𝑚𝑏𝑚
Λ𝑣𝜇ℎ

𝜇𝑣Λℎ
∙ 𝛼𝑚ℎ𝑏𝑚    . . . (50) 

ℛ0 < 1,  

⟹√
𝛼𝑚ℎ𝑏𝑚

𝜇𝑣
.

𝛼ℎ𝑚𝑏𝑚

(𝛽1+𝜇ℎ+𝑑1)

Λ𝑣

𝜇𝑣

𝜇ℎ

Λℎ
< 1   

⟹
𝛼𝑚ℎ𝑏𝑚

𝜇𝑣
.

𝛼ℎ𝑚𝑏𝑚

(𝛽1+𝜇ℎ+𝑑1)

Λ𝑣

𝜇𝑣

𝜇ℎ

Λℎ
< 1   

⟹ 𝛼ℎ𝑚𝑏𝑚
Λ𝑣

𝜇𝑣

𝜇ℎ

Λℎ
𝛼𝑚ℎ𝑏𝑚 < (𝛽1 + 𝜇ℎ + 𝑑1) ∙ 𝜇𝑣     

⟹ 𝛼ℎ𝑚𝑏𝑚
Λ𝑣
𝜇𝑣

𝜇ℎ
Λℎ
𝛼𝑚ℎ𝑏𝑚 − (𝛽1 + 𝜇ℎ + 𝑑1) ∙ 𝜇𝑣 < 0 

⟹ (𝛽1 + 𝜇ℎ + 𝑑1) ∙ 𝜇𝑣 − 𝛼ℎ𝑚𝑏𝑚
Λ𝑣
𝜇𝑣

𝜇ℎ
Λℎ
𝛼𝑚ℎ𝑏𝑚 > 0 

⟹ 𝑎0 > 0 

Hence, all eigenvalues of the Jacobian matrix evaluated at the DFE point have negative 

real parts. This completes the proof that the DFE for the coinfection Model is LAS if ℛ0 < 

1 and it is unstable whenever ℛ0 > 1 (since not all eigenvalues have negative real parts if 

ℛ0 > 1). 

Optimal Control Analysis 

The co-infection model was extended to include four controls which have a major effect in 

the control of the infected population. The control intervention added to the co-infection 

model are: 

1. 𝑢𝑚
1 : Malaria prevention effort 

2. 𝑢𝐻
1 : HBV Infection prevention effort 

3. 𝑢𝑚
2 : Malaria Treatment prevention effort 

4. 𝑢𝐻
2 : HBV Infection Treatment effort 

The above four controls are incorporated into the co-infection model and the following 

model is obtain: 
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𝑑𝑆ℎ
𝑑𝑡

= Λℎ + 𝛾1𝑅ℎ𝑚 + 𝛾2𝑅ℎ𝐻 + 𝛾3𝑅ℎ𝑚𝐻 − ((1 − 𝑢𝑚
1 )𝛼1 + (1 − 𝑢𝐻

1 )𝛼2 + 𝜇ℎ)𝑆ℎ            

𝑑𝐼ℎ𝑚
𝑑𝑡

= (1 − 𝑢𝑚
1 )𝛼1𝑆ℎ − 𝜓(1 − 𝑢𝐻

1 )𝛼2𝐼ℎ𝑚 − (𝜇ℎ + 𝑑1)𝐼ℎ𝑚 − (𝛽1 + 𝑢𝑚
2 )𝐼ℎ𝑚               

𝑑𝐼ℎ𝐻
𝑑𝑡

= (1 − 𝑢𝐻
1 )𝛼2𝑆ℎ − (1 − 𝑢𝑚

1 )𝛼1𝐼ℎ𝐻 − (𝜇ℎ + 𝑑2)𝐼ℎ𝐻 − (𝛽2 + 𝑢𝐻
2 )𝐼ℎ𝐻                   

𝑑𝐼ℎ𝑚𝐻
𝑑𝑡

= 𝜓(1 − 𝑢𝐻
1 )𝛼2𝐼ℎ𝑚 + (1 − 𝑢𝑚

1 )𝛼1𝐼ℎ𝐻 − (𝜇ℎ + 𝑑1 + 𝑑2)𝐼ℎ𝑚𝐻 − (𝛿 + 𝑢𝑚
2 + 𝑢𝐻

2 )𝐼ℎ𝑚𝐻

𝑑𝑅ℎ𝑚
𝑑𝑡

= (β1 + 𝑢𝑚
2 )𝐼ℎ𝑚 + (𝛿𝑒 + 𝑢𝑚

2 )𝐼ℎ𝑚𝐻 − (𝜇ℎ + 𝛾1)𝑅ℎ𝑚                                               

𝑑𝑅ℎ𝐻
𝑑𝑡

= (β2 + 𝑢𝐻
2 )𝐼ℎ𝐻 + (𝛿𝑓(1 − 𝑒) + 𝑢𝐻

2 )𝐼ℎ𝑚𝐻 − (𝜇ℎ + 𝛾2)𝑅ℎ𝐻                                       

𝑑𝑅ℎ𝑚𝐻
𝑑𝑡

= (𝛿(1 − 𝑓)(1 − 𝑒) + 𝑢𝑚
2 + 𝑢𝐻

2 )𝐼ℎ𝑚𝐻 − (𝜇ℎ + 𝛾3)𝑅ℎ𝑚𝐻                                        

𝑑𝑆𝑣
𝑑𝑡

= Λ𝑣 − (𝜇𝑣 + 𝜉𝑣)𝑆𝑣                                                                                                              

𝑑𝐼𝑣
𝑑𝑡
= 𝜉𝑣𝑆𝑣 − 𝜇𝑣𝐼𝑣                                                                                                                      

   

               

  

 

We now consider the following objective functional for the above model 

𝐽(𝑢𝑚
1 , 𝑢𝐻

1 , 𝑢𝑚
2 , 𝑢𝐻

2 )

= ∫ [𝑎1𝐼ℎ𝑚 + 𝑎2𝐼ℎ𝐻 + 𝑎3𝐼ℎ𝑚𝐻 +
1

2
𝑏1(𝑢𝑚

1 )2+
1

2
𝑏2(𝑢𝐻

1 )2 +
1

2
𝑏3(𝑢𝑚

2 )2
𝑡𝐹

0

+
1

2
𝑏4(𝑢𝐻

2 )2] 𝑑𝑡 

           . . . (52) 

Where 𝑢𝑚
1 , 𝑢𝐻

1 , 𝑢𝑚
2  and 𝑢𝐻

2  are the control functions and are bounded, Lebesgue – integrable 

functions. The control functions are consistent with other studies like (Bonyah, Khan, 

Okosun, & Gómez-Aguilar, 2019) and (Getachew, 2019).  The controls 𝑢𝑚
1  and 𝑢𝐻

1  deal 

with the wanted amount of effort made in the prevention of Malaria and HBV infections 

respectively while controls 𝑢𝑚
2  and 𝑢𝐻

2  deals with the treatment effort made on Malaria – 

Infected individuals and HBV Infected individuals respectively.  𝑢𝑚
1  and 𝑢𝐻

1  satisfy 0 ≤
𝑢𝑚
1 ≤ 𝑀1 and 0 ≤ 𝑢𝐻

1 ≤ 𝐻1 where 𝑀1  deal with the efficacy of insecticide used against 

mosquitoes and 𝐻1 denotes the efficacy of HBV infection vaccine use for the prevention 

of HBV infection in susceptible individuals. 

. . . (51) 
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𝑢𝑚
2  and 𝑢𝐻

2  satisfy 0 ≤ 𝑢𝑚
2 ≤ 𝑀2 and 0 ≤ 𝑢𝐻

2 ≤ 𝐻2 where 𝑀2 and 𝐻2 deal with the 

efficacy of drugs used in treatment against Malaria and the efficacy of HBV infection drugs 

use for the treatment of HBV infection in infected individuals respectively. 

𝑈 = {(𝑢𝑚
1 (𝑡), 𝑢𝐻

1 (𝑡), 𝑢𝑚
2 (𝑡), 𝑢𝐻

2 (𝑡)): 0 ≤ 𝑢𝑚
1 ≤ 𝑀1, 0 ≤ 𝑢𝐻

1 ≤ 𝐻1, 0 ≤ 𝑢𝑚
2 ≤  𝑀2, 0 ≤

𝑢𝐻
2 ≤ 𝐻2, 0 ≤ 𝑡 ≤ 𝑡𝐹} being Lebesgue Measurable is crucial for the study of optimal level. 

We assume 𝑀1 = 𝑀2 = 𝐻1 = 𝐻2 = 1. The target here is to find a set of controls 𝑈 =

{(𝑢𝑚
1 (𝑡), 𝑢𝐻

1 (𝑡), 𝑢𝑚
2 (𝑡), 𝑢𝐻

2 (𝑡))} and 𝐼ℎ𝑚, 𝐼ℎ𝐻 , 𝐼ℎ𝑚𝐻 that will minimize the objective 

function 

𝐽(𝑢𝑚
1 , 𝑢𝐻

1 , 𝑢𝑚
2 , 𝑢𝐻

2 )

= ∫ [𝑎1𝐼ℎ𝑚 + 𝑎2𝐼ℎ𝐻 + 𝑎3𝐼ℎ𝑚𝐻 +
1

2
𝑏1(𝑢𝑚

1 )2+
1

2
𝑏2(𝑢𝐻

1 )2 +
1

2
𝑏3(𝑢𝑚

2 )2
𝑡𝐹

0

+
1

2
𝑏4(𝑢𝐻

2 )2] 𝑑𝑡  

           . . . (53) 

Where 𝑎𝑖 , 𝑖 = 1, 2, 3 and 𝑏𝑖 , 𝑖 = 1, 2, 3, 4 are positive. The expression  
1

2
𝑏1(𝑢𝑚

1 )2+
1

2
𝑏2(𝑢𝐻

1 )2 +
1

2
𝑏3(𝑢𝑚

2 )2 +
1

2
𝑏4(𝑢𝐻

2 )2 denotes costs. The aim is to minimize the 

compartments that are infected and costs which means that we want to obtain optimal 

controls set (𝑢𝑚
1 ∗, 𝑢𝐻

1 ∗, 𝑢𝑚
2 ∗, 𝑢𝐻

2 ∗) where, 

𝐽(𝑢𝑚
1 ∗, 𝑢𝐻

1 ∗, 𝑢𝑚
2 ∗, 𝑢𝐻

2 ∗) = min {(𝑢𝑚
1 , 𝑢𝐻

1 , 𝑢𝑚
2 , 𝑢𝐻

2 ): (𝑢𝑚
1 , 𝑢𝐻

1 , 𝑢𝑚
2 , 𝑢𝐻

2 ) ∈ 𝑈}  . . . 

(54) 

The vital criterion for an optimal solution to be made to satisfy can be derived from 

Pontryagin's maximum principle (PMP). This principle essentially converts equations (51) 

and (53) to a problem of minimizing a Hamiltonian, with regards to 𝑢𝑚
1 , 𝑢𝐻

1 , 𝑢𝑚
2  and 𝑢𝐻

2  

(Bonyah, Khan, Okosun, & Gómez-Aguilar, 2019). The Hamiltonian for the problem is 

given as, 

𝐻(𝑆ℎ(𝑡), 𝐼ℎ𝑚(𝑡), 𝐼ℎ𝐻(𝑡), 𝐼ℎ𝑚𝐻(𝑡), 𝑅ℎ𝑚(𝑡), 𝑅ℎ𝐻(𝑡), 𝑅ℎ𝑚𝐻(𝑡), 𝑆𝑣(𝑡), 𝐼𝑣(𝑡))

= 𝐿(𝐼ℎ𝑚(𝑡), 𝐼ℎ𝐻(𝑡), 𝐼ℎ𝑚𝐻(𝑡), 𝑢𝑚
1 , 𝑢𝐻

1 , 𝑢𝑚
2 , 𝑢𝐻

2 , 𝑡 ) + 𝜆1
𝑑𝑆ℎ(𝑡)

𝑑𝑡
+ 𝜆2

𝑑𝐼ℎ𝑚(𝑡)

𝑑𝑡

+ 𝜆3
𝑑𝐼ℎ𝐻(𝑡)

𝑑𝑡
 + 𝜆4

𝑑𝐼ℎ𝑚𝐻(𝑡)

𝑑𝑡
+ 𝜆5

𝑑𝑅ℎ𝑚(𝑡)

𝑑𝑡
+ 𝜆6

𝑑𝑅ℎ𝐻(𝑡)

𝑑𝑡
 + 𝜆7

𝑑𝑅ℎ𝑚𝐻(𝑡)

𝑑𝑡

+ 𝜆8
𝑑𝑆𝑣(𝑡)

𝑑𝑡
+𝜆9

𝑑𝐼𝑣(𝑡)

𝑑𝑡
 

           . . . (55) 

Where 
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𝐿(𝐼ℎ𝑚(𝑡), 𝐼ℎ𝐻(𝑡), 𝐼ℎ𝑚𝐻(𝑡), 𝑢𝑚
1 , 𝑢𝐻

1 , 𝑢𝑚
2 , 𝑢𝐻

2 , 𝑡 )

= 𝑎1𝐼ℎ𝑚 + 𝑎2𝐼ℎ𝐻 + 𝑎3𝐼ℎ𝑚𝐻 +
1

2
𝑏1(𝑢𝑚

1 )2+
1

2
𝑏2(𝑢𝐻

1 )2 +
1

2
𝑏3(𝑢𝑚

2 )2

+
1

2
𝑏4(𝑢𝐻

2 )2 

           . . . (56) 

And  

𝜆𝑖 , 𝑖 = 1, 2, 3, 4, 5, 6, 7, 8, 9        . . . (57) 

Are the adjoint variable functions (Getachew, 2019). 
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Theorem 3: For the optimal control set 𝑢𝑚
1 , 𝑢𝐻

1 , 𝑢𝑚
2 , 𝑢𝐻

2  which minimizes 𝐽 over 𝑈, there 

exist some adjoint variables, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7, 𝜆8, 𝜆9 such that: 

 
𝑑𝜆1
𝑑𝑡

= −𝜆1((1 − 𝑢𝑚
1 )𝛼1 + (1 − 𝑢𝐻

1 )𝛼2 + 𝜇ℎ) − 𝜆2((1 − 𝑢𝐻
1 )𝛼2) − 𝜆3((1 − 𝑢𝐻

1 )𝛼2) 

𝑑𝜆2
𝑑𝑡

= −𝑎1 − 𝜆1(𝜓(1 − 𝑢𝐻
2 )𝐴1 − (𝜇ℎ + 𝑑1 + 𝛽1 + 𝑢𝑚

2 )) − 𝜆4(𝜓(1 − 𝑢𝐻
2 )𝐴1))

− 𝜆5(𝛽1 + 𝑢𝑚
2 ) + 𝜆8𝐴2 − 𝜆9𝐴2 

𝑑𝜆3
𝑑𝑡

= −𝑎2 − 𝜆1(1 − 𝑢𝐻
1 )𝐵1𝑆ℎ − 𝜆2(1 − 𝑢𝐻

1 )𝐵1𝐼ℎ𝑚

− 𝜆3((1 − 𝑢𝐻
1 )𝐵1𝑆ℎ − 𝛼1(1 − 𝑢𝑚

1 ) − (𝜇ℎ + 𝑑2 + 𝛽2 + 𝑢𝐻
2 ))

− 𝜆4((1 − 𝑢𝐻
1 )𝐵1𝐼ℎ𝑚 − 𝛼1(1 − 𝑢𝑚

1 )) − 𝜆6(𝛽2 + 𝑢𝐻
2 ) 

𝑑𝜆4
𝑑𝑡

= −𝑎3 − 𝜆1(1 − 𝑢𝐻
1 )𝐵1𝑆ℎ−𝜆2𝜓(1 − 𝑢𝐻

1 )𝐵1𝐼ℎ𝑚 − 𝜆3(1 − 𝑢𝐻
1 )𝐵1𝑆ℎ

− 𝜆4(𝜓(1 − 𝑢𝐻
1 )𝐵1𝐼ℎ𝑚 − (𝜇ℎ + 𝑑1 + 𝑑2 + 𝛿 + 𝑢𝑚

2 + 𝑢𝐻
2 )) − 𝜆5(𝛿𝑒 + 𝑢𝑚

2 )

+ 𝜆6(𝛿𝑓(1 − 𝑒) + 𝑢𝐻
2 ) + 𝜆7(𝛿(1 − 𝑓)(1 − 𝑒) + 𝑢𝑚

2 + 𝑢𝐻
2 ) 

𝑑𝜆5
𝑑𝑡

= −𝜆1𝛾1 + 𝜆5(𝜇ℎ + 𝛾1) 

𝑑𝜆6
𝑑𝑡

= −𝜆1𝛾2 + 𝜆6(𝜇ℎ + 𝛾2) 

𝑑𝜆7
𝑑𝑡

= −𝜆1𝛾3 + 𝜆7(𝜇ℎ + 𝛾3) 

𝑑𝜆8
𝑑𝑡

= 𝜆8(𝜇𝑣 + 𝜉𝑣) − 𝜆9𝜉𝑣 

𝑑𝜆9
𝑑𝑡

= −𝜆1(1 − 𝑢𝑚
1 )𝐶1𝑆ℎ − 𝜆2(1 − 𝑢𝑚

1 )𝐶1𝑆ℎ + 𝜆1(1 − 𝑢𝑚
1 )𝐶1𝐼ℎ𝐻 − 𝜆4(1 − 𝑢𝑚

1 )𝐶1𝐼ℎ𝐻

+ 𝜆9𝜇𝑣 

 

where 𝐴1 =
𝛼𝐻(𝐼ℎ𝐻+𝐼ℎ𝑚𝐻)

𝑁ℎ
, 𝐴2 =

𝑆𝑣𝛼ℎ𝑚𝑏𝑚

𝑁ℎ
, 𝐵1 =

𝛼𝐻

𝑁ℎ
, 𝐶1 =

𝛼𝑚ℎ𝑏𝑚

𝑁ℎ
 

With transversality conditions 𝜆𝑖(𝑡𝐹) = 0, 𝑖 = 1, 2, 3, 4, 5, 6, 7, 8, 9.  

 

 

And the following controls, 

𝑢𝑚
1 ∗ =

𝛼1𝑆ℎ(𝜆2−𝜆1)+𝛼1𝐼ℎ𝐻(𝜆4−𝜆3)

𝑏1
       . . . (59)  

. . . (58) 
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𝑢𝐻
1 ∗ =

𝛼2𝑆ℎ(𝜆3−𝜆1)+𝜓𝛼2𝐼ℎ𝑚(𝜆4+𝜆2)

𝑏2
       . . . (60) 

𝑢𝑚
2 ∗ =

𝐼ℎ𝑚(𝜆2−𝜆5)+𝐼ℎ𝑚𝐻(𝜆4−𝜆5−𝜆7)

𝑏3
       . . . (61) 

𝑢𝐻
2 ∗ =

𝐼ℎ𝐻(𝜆3−𝜆6)+𝐼ℎ𝑚𝐻(𝜆4−𝜆6−𝜆7)

𝑏4
        . . . (62) 

Proof: We will apply the Pontryagin’s Maximum Principle used in (Getachew, 2019), that 

is the adjoint system must satisfy 
𝑑𝜆𝑖

𝑑𝑡
= −

𝑑𝐻

𝑑𝑖
          . . . (63) 

 Where 𝑖 = 𝑆ℎ , 𝐼ℎ𝑚, 𝐼ℎ𝐻 , 𝐼ℎ𝑚𝐻 , 𝑅ℎ𝑚, 𝑅ℎ𝐻 , 𝑅ℎ𝑚𝐻 , 𝑆𝑣 , 𝐼𝑣 and 𝐻 is the Hamiltonian. 

The Hamiltonian for the system is given by, 

𝐻 = 𝐿 + 𝜆1
𝑑𝑆ℎ(𝑡)

𝑑𝑡
+ 𝜆2

𝑑𝐼ℎ𝑚(𝑡)

𝑑𝑡
+ 𝜆3

𝑑𝐼ℎ𝐻(𝑡)

𝑑𝑡
 + 𝜆4

𝑑𝐼ℎ𝑚𝐻(𝑡)

𝑑𝑡
+ 𝜆5

𝑑𝑅ℎ𝑚(𝑡)

𝑑𝑡

+ 𝜆6
𝑑𝑅ℎ𝐻(𝑡)

𝑑𝑡
 + 𝜆7

𝑑𝑅ℎ𝑚𝐻(𝑡)

𝑑𝑡
+ 𝜆8

𝑑𝑆𝑣(𝑡)

𝑑𝑡
+𝜆9

𝑑𝐼𝑣(𝑡)

𝑑𝑡
 

           . . . (64) 

Where 

𝐿 = 𝑎1𝐼ℎ𝑚 + 𝑎2𝐼ℎ𝐻 + 𝑎3𝐼ℎ𝑚𝐻 +
1

2
𝑏1(𝑢𝑚

1 )2+
1

2
𝑏2(𝑢𝐻

1 )2 +
1

2
𝑏3(𝑢𝑚

2 )2 +
1

2
𝑏4(𝑢𝐻

2 )2 . . . (65) 

We obtain the following adjoint systems after applying the PMP, 
𝑑𝜆1

𝑑𝑡
= −

𝑑𝐻

𝑑𝑆ℎ
= −𝜆1((1 − 𝑢𝑚

1 )𝛼1 + (1 − 𝑢𝐻
1 )𝛼2 + 𝜇ℎ) − 𝜆2((1 − 𝑢𝐻

1 )𝛼2) −

𝜆3((1 − 𝑢𝐻
1 )𝛼2)   

           . . . (66) 
𝑑𝜆2

𝑑𝑡
= −

𝑑𝐻

𝑑𝐼ℎ𝑚
= −𝑎1 − 𝜆1(𝜓(1 − 𝑢𝐻

2 )𝐴1 − (𝜇ℎ + 𝑑1 + 𝛽1 + 𝑢𝑚
2 )) − 𝜆4(𝜓(1 −

𝑢𝐻
2 )𝐴1)) − 𝜆5(𝛽1 + 𝑢𝑚

2 ) + 𝜆8𝐴2 − 𝜆9𝐴2       

 . . . (67) 
𝑑𝜆3
𝑑𝑡

= −
𝑑𝐻

𝑑𝐼ℎ𝐻
= −𝑎2 − 𝜆1(1 − 𝑢𝐻

1 )𝐵1𝑆ℎ − 𝜆2(1 − 𝑢𝐻
1 )𝐵1𝐼ℎ𝑚

− 𝜆3((1 − 𝑢𝐻
1 )𝐵1𝑆ℎ − 𝛼1(1 − 𝑢𝑚

1 ) − (𝜇ℎ + 𝑑2 + 𝛽2 + 𝑢𝐻
2 ))

− 𝜆4((1 − 𝑢𝐻
1 )𝐵1𝐼ℎ𝑚 − 𝛼1(1 − 𝑢𝑚

1 )) − 𝜆6(𝛽2 + 𝑢𝐻
2 ) 

           . . . (68) 
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𝑑𝜆4
𝑑𝑡

= −
𝑑𝐻

𝑑𝐼ℎ𝑚𝐻
= −𝑎3
− 𝜆1(1 − 𝑢𝐻

1 )𝐵1𝑆ℎ−𝜆2𝜓(1 − 𝑢𝐻
1 )𝐵1𝐼ℎ𝑚 − 𝜆3(1 − 𝑢𝐻

1 )𝐵1𝑆ℎ
−  𝜆4(𝜓(1 − 𝑢𝐻

1 )𝐵1𝐼ℎ𝑚 − (𝜇ℎ + 𝑑1 + 𝑑2 + 𝛿 + 𝑢𝑚
2 + 𝑢𝐻

2 ))

− 𝜆5(𝛿𝑒 + 𝑢𝑚
2 ) + 𝜆6(𝛿𝑓(1 − 𝑒) + 𝑢𝐻

2 ) + 𝜆7(𝛿(1 − 𝑓)(1 − 𝑒) + 𝑢𝑚
2

+ 𝑢𝐻
2 )) 

           . . . (69) 
𝑑𝜆5

𝑑𝑡
= −

𝑑𝐻

𝑑𝑅ℎ𝑚
= −𝜆1𝛾1 + 𝜆5(𝜇ℎ + 𝛾1)      . . . (70) 

𝑑𝜆6

𝑑𝑡
= −

𝑑𝐻

𝑑𝑅ℎ𝐻
= −𝜆1𝛾2 + 𝜆6(𝜇ℎ + 𝛾2)      . . . (71) 

𝑑𝜆7

𝑑𝑡
= −

𝑑𝐻

𝑑𝑅ℎ𝑚𝐻
= −𝜆1𝛾3 + 𝜆7(𝜇ℎ + 𝛾3)      . . . (72) 

𝑑𝜆8

𝑑𝑡
= −

𝑑𝐻

𝑑𝑆𝑣
= 𝜆8(𝜇𝑣 + 𝜉𝑣) − 𝜆9𝜉𝑣       . . . 

(73) 
𝑑𝜆9

𝑑𝑡
= −

𝑑𝐻

𝑑𝐼𝑣
= −𝜆1(1 − 𝑢𝑚

1 )𝐶1𝑆ℎ − 𝜆2(1 − 𝑢𝑚
1 )𝐶1𝑆ℎ + 𝜆1(1 − 𝑢𝑚

1 )𝐶1𝐼ℎ𝐻 −

𝜆4(1 − 𝑢𝑚
1 )𝐶1𝐼ℎ𝐻 + 𝜆9𝜇𝑣          

 . . . (74) 

where 𝐴1 =
𝛼𝐻(𝐼ℎ𝐻+𝐼ℎ𝑚𝐻)

𝑁ℎ
, 𝐴2 =

𝑆𝑣𝛼ℎ𝑚𝑏𝑚

𝑁ℎ
, 𝐵1 =

𝛼𝐻

𝑁ℎ
, 𝐶1 =

𝛼𝑚ℎ𝑏𝑚

𝑁ℎ
 

Now, we get the controls, we apply the equation,  
𝜕𝐻

𝜕𝑢𝑖
= 0, 𝑢𝑖 = 𝑢𝑚

1 , 𝑢𝐻
1 , 𝑢𝑚

2 , 𝑢𝐻
2         . . . 

(75)  

Thus we obtain the following equations, 
𝜕𝐻

𝜕𝑢𝑚
1 = 0          . . . (76) 

𝜕𝐻

𝜕𝑢𝐻
1 = 0          . . . (77) 

𝜕𝐻

𝜕𝑢𝑚
2 = 0          . . . (78) 

𝜕𝐻

𝜕𝑢𝐻
2 = 0          . . . (79) 

 

Solving for 𝑢𝑚
1 , 𝑢𝐻

1 , 𝑢𝑚
2 , 𝑢𝐻

2  we obtained the following: 

𝑢𝑚
1 ∗ =

𝛼1𝑆ℎ(𝜆2−𝜆1)+𝛼1𝐼ℎ𝐻(𝜆4−𝜆3)

𝑏1
       . . . (80) 

𝑢𝐻
1 ∗ =

𝛼2𝑆ℎ(𝜆3−𝜆1)+𝜓𝛼2𝐼ℎ𝑚(𝜆4+𝜆2)

𝑏2
       . . . (81) 
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𝑢𝑚
2 ∗ =

𝐼ℎ𝑚(𝜆2−𝜆5)+𝐼ℎ𝑚𝐻(𝜆4−𝜆5−𝜆7)

𝑏3
       . . . (82) 

𝑢𝐻
2 ∗ =

𝐼ℎ𝐻(𝜆3−𝜆6)+𝐼ℎ𝑚𝐻(𝜆4−𝜆6−𝜆7)

𝑏4
       . . . (83) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

now, the optimality system obtained is 

. . . (84) 
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𝑑𝑆ℎ
𝑑𝑡

= Λℎ + 𝛾1𝑅ℎ𝑚 + 𝛾2𝑅ℎ𝐻 + 𝛾3𝑅ℎ𝑚𝐻 − ((1 − 𝑢𝑚
1 )𝛼1 + (1 − 𝑢𝐻

1 )𝛼2 + 𝜇ℎ)𝑆ℎ            

𝑑𝐼ℎ𝑚
𝑑𝑡

= (1 − 𝑢𝑚
1 )𝛼1𝑆ℎ − 𝜓(1 − 𝑢𝐻

1 )𝛼2𝐼ℎ𝑚 − (𝜇ℎ + 𝑑1)𝐼ℎ𝑚 − (𝛽1 + 𝑢𝑚
2 )𝐼ℎ𝑚               

𝑑𝐼ℎ𝐻
𝑑𝑡

= (1 − 𝑢𝐻
1 )𝛼2𝑆ℎ − (1 − 𝑢𝑚

1 )𝛼1𝐼ℎ𝐻 − (𝜇ℎ + 𝑑2)𝐼ℎ𝐻 − (𝛽2 + 𝑢𝐻
2 )𝐼ℎ𝐻                   

𝑑𝐼ℎ𝑚𝐻
𝑑𝑡

= 𝜓(1 − 𝑢𝐻
1 )𝛼2𝐼ℎ𝑚 + (1 − 𝑢𝑚

1 )𝛼1𝐼ℎ𝐻 − (𝜇ℎ + 𝑑1 + 𝑑2)𝐼ℎ𝑚𝐻 − (𝛿 + 𝑢𝑚
2 + 𝑢𝐻

2 )𝐼ℎ𝑚𝐻

𝑑𝑅ℎ𝑚
𝑑𝑡

= (β1 + 𝑢𝑚
2 )𝐼ℎ𝑚 + (𝛿𝑒 + 𝑢𝑚

2 )𝐼ℎ𝑚𝐻 − (𝜇ℎ + 𝛾1)𝑅ℎ𝑚                                               

𝑑𝑅ℎ𝐻
𝑑𝑡

= (β2 + 𝑢𝐻
2 )𝐼ℎ𝐻 + (𝛿𝑓(1 − 𝑒) + 𝑢𝐻

2 )𝐼ℎ𝑚𝐻 − (𝜇ℎ + 𝛾2)𝑅ℎ𝐻                                       

𝑑𝑅ℎ𝑚𝐻
𝑑𝑡

= (𝛿(1 − 𝑓)(1 − 𝑒) + 𝑢𝑚
2 + 𝑢𝐻

2 )𝐼ℎ𝑚𝐻 − (𝜇ℎ + 𝛾3)𝑅ℎ𝑚𝐻                                        

𝑑𝑆𝑣
𝑑𝑡

= Λ𝑣 − (𝜇𝑣 + 𝜉𝑣)𝑆𝑣                                                                                                              

𝑑𝐼𝑣
𝑑𝑡
= 𝜉𝑣𝑆𝑣 − 𝜇𝑣𝐼𝑣                                                                                                                      

   

 

𝑑𝜆1
𝑑𝑡

= −𝜆1((1 − 𝑢𝑚
1 )𝛼1 + (1 − 𝑢𝐻

1 )𝛼2 + 𝜇ℎ) − 𝜆2((1 − 𝑢𝐻
1 )𝛼2) − 𝜆3((1 − 𝑢𝐻

1 )𝛼2) 

𝑑𝜆2
𝑑𝑡

= −𝑎1 − 𝜆1(𝜓(1 − 𝑢𝐻
2 )𝐴1 − (𝜇ℎ + 𝑑1 + 𝛽1 + 𝑢𝑚

2 )) − 𝜆4(𝜓(1 − 𝑢𝐻
2 )𝐴1))

− 𝜆5(𝛽1 + 𝑢𝑚
2 ) + 𝜆8𝐴2 − 𝜆9𝐴2 

𝑑𝜆3
𝑑𝑡

= −𝑎2 − 𝜆1(1 − 𝑢𝐻
1 )𝐵1𝑆ℎ − 𝜆2(1 − 𝑢𝐻

1 )𝐵1𝐼ℎ𝑚

− 𝜆3((1 − 𝑢𝐻
1 )𝐵1𝑆ℎ − 𝛼1(1 − 𝑢𝑚

1 ) − (𝜇ℎ + 𝑑2 + 𝛽2 + 𝑢𝐻
2 ))

− 𝜆4((1 − 𝑢𝐻
1 )𝐵1𝐼ℎ𝑚 − 𝛼1(1 − 𝑢𝑚

1 )) − 𝜆6(𝛽2 + 𝑢𝐻
2 ) 

𝑑𝜆4
𝑑𝑡

= −𝑎3 − 𝜆1(1 − 𝑢𝐻
1 )𝐵1𝑆ℎ−𝜆2𝜓(1 − 𝑢𝐻

1 )𝐵1𝐼ℎ𝑚 − 𝜆3(1 − 𝑢𝐻
1 )𝐵1𝑆ℎ

− 𝜆4(𝜓(1 − 𝑢𝐻
1 )𝐵1𝐼ℎ𝑚 − (𝜇ℎ + 𝑑1 + 𝑑2 + 𝛿 + 𝑢𝑚

2 + 𝑢𝐻
2 )) − 𝜆5(𝛿𝑒 + 𝑢𝑚

2 )

+ 𝜆6(𝛿𝑓(1 − 𝑒) + 𝑢𝐻
2 ) + 𝜆7(𝛿(1 − 𝑓)(1 − 𝑒) + 𝑢𝑚

2 + 𝑢𝐻
2 ) 

𝑑𝜆5
𝑑𝑡

= −𝜆1𝛾1 + 𝜆5(𝜇ℎ + 𝛾1) 

𝑑𝜆6
𝑑𝑡

= −𝜆1𝛾2 + 𝜆6(𝜇ℎ + 𝛾2) 
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𝑑𝜆7
𝑑𝑡

= −𝜆1𝛾3 + 𝜆7(𝜇ℎ + 𝛾3) 

𝑑𝜆8
𝑑𝑡

= 𝜆8(𝜇𝑣 + 𝜉𝑣) − 𝜆9𝜉𝑣 

𝑑𝜆9
𝑑𝑡

= −𝜆1(1 − 𝑢𝑚
1 )𝐶1𝑆ℎ − 𝜆2(1 − 𝑢𝑚

1 )𝐶1𝑆ℎ + 𝜆1(1 − 𝑢𝑚
1 )𝐶1𝐼ℎ𝐻 − 𝜆4(1 − 𝑢𝑚

1 )𝐶1𝐼ℎ𝐻

+ 𝜆9𝜇𝑣 

With 𝜆𝑖(𝑡𝐹) = 0, 𝑖 = 1, 2, 3, 4, 5, 6, 7, 8, 9 

And 

𝑆ℎ(0) = 𝑆ℎ0 

𝐼ℎ𝑚(0) = 𝐼ℎ𝑚0 

𝐼ℎ𝐻(0) = 𝐼ℎ𝐻0 

𝐼ℎ𝑚𝐻(0) = 𝐼ℎ𝑚𝐻0 

𝑅ℎ𝑚(0) = 𝑅ℎ𝑚0 

𝑅ℎ𝐻(0) = 𝑅ℎ𝐻0 

𝑅ℎ𝑚𝐻(0) = 𝑅ℎ𝑚𝐻0 

𝑆𝑣(0) = 𝑆𝑣0 

𝐼𝑣(0) = 𝐼𝑣0 

Numerical Solution of the Optimality System 

In this section, we extend the co-infection model through the incorporation of control. The 

following sections, we present the optimality system numerical simulation using the 

forward fourth-order Runge–Kutta method in solving the system. The solution of the 

optimality system was obtained using a method called the forward – backward sweep 

method which was applied by (Haileyesus, Assefa, & Anteneh, 2021). We started by 

solving the equations of the state variables using an initial guess for the controls over the 

simulated time by applying the forward fourth – order Runge Kutta method. We then 

continued by solving the equations of the adjoint variables using the backward fourth – 

order Runge Kutta method with the solutions of the state variables of the current iteration 

and the tranversality condition. The control variables are then continuously updated by 

combining previous results of the control with the control characterization. After updating 

the control variables, the solutions of the state variables and adjoint variables are repeated. 

These iterations are repeated continuously until when consecutive iterations are close 

enough to each other (Haileyesus, Assefa, & Anteneh, 2021).  Maple 17 and Matlab 

software were used for the simulation. 

. . . (85) 
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Numerical Experiment and Simulation of the Optimality System 

The numerical simulations of the Malaria HBV co-infection model with controls i.e. model 

(3) and without controls were examined so as to demonstrate the effectiveness of the 

controls that have been considered. The following five approaches for the numerical 

simulation were offered: 

1. Using only prevention effort for both diseases (𝒖𝒎
𝟏 ≠ 𝟎, 𝒖𝑯

𝟏 ≠ 𝟎, 𝒖𝒎
𝟐 = 𝟎, 𝒖𝑯

𝟐 =
𝟎). 

2. Using prevention effort for Malaria and treatment effort for HBV infection disease 

(𝒖𝒎
𝟏 ≠ 𝟎, 𝒖𝑯

𝟏 = 𝟎, 𝒖𝒎
𝟐 = 𝟎, 𝒖𝑯

𝟐 ≠ 𝟎). 

3. Using prevention effort for HBV infection disease and treatment effort for Malaria 

(𝒖𝒎
𝟏 = 𝟎, 𝒖𝑯

𝟏 ≠ 𝟎, 𝒖𝒎
𝟐 ≠ 𝟎, 𝒖𝑯

𝟐 = 𝟎). 

4. Using only treatment effort for both diseases (𝒖𝒎
𝟏 = 𝟎, 𝒖𝑯

𝟏 = 𝟎, 𝒖𝒎
𝟐 ≠ 𝟎, 𝒖𝑯

𝟐 ≠ 𝟎). 

5. Using all the intervention efforts (𝒖𝒎
𝟏 ≠ 𝟎, 𝒖𝑯

𝟏 ≠ 𝟎, 𝒖𝒎
𝟐 ≠ 𝟎, 𝒖𝑯

𝟐 ≠ 𝟎). 

For the purpose of simulation, parameter values listed in table 3 were used together with 

the following initial conditions, 𝑆ℎ(0) = 200, 𝐼ℎ𝑚(0) = 600, 𝐼ℎ𝐻(0) = 600, 𝐼ℎ𝑚𝐻(0) =
250, 𝑅ℎ𝑚(0) = 60, 𝑅ℎ𝐻(0) = 60, 𝑅ℎ𝑚𝐻(0) = 40, 𝑆𝑣(0) = 260, 𝐼𝑣(0) = 120, 𝑎1 =
35, 𝑎2 = 45, 𝑎3 = 26, 𝑏1 = 4, 𝑏2 = 3, 𝑏3 = 5, 𝑏4 = 6 (Getachew, 2019). 

Control using only prevention effort for both diseases (𝒖𝒎
𝟏 ≠ 𝟎, 𝒖𝑯

𝟏 ≠ 𝟎, 𝒖𝒎
𝟐 =

𝟎, 𝒖𝑯
𝟐 = 𝟎) 

Here prevention for both Malaria and HBV infection diseases were applied as the 

intervention strategy. The following figures shows the simulation results, we see this 

prevention strategy has a great impact in controlling the coinfection population. 

 

 

 

 

 

 

 

 

       𝒖𝒎
𝟏 = 𝒖𝑯

𝟏 = 𝒖𝒎
𝟐 = 𝒖𝑯

𝟐 = 𝟎 

        𝒖𝒎
𝟏 ≠ 𝟎, 𝒖𝑯

𝟏 ≠ 𝟎, 𝒖𝒎
𝟐 = 𝟎, 𝒖𝑯

𝟐 = 𝟎  

Figure 2: Effect of prevention using only prevention effort for both diseases on 

coinfectious populations. 
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Control using prevention effort for Malaria and treatment effort for HBV infection 

disease (𝒖𝒎
𝟏 ≠ 𝟎, 𝒖𝑯

𝟏 = 𝟎, 𝒖𝒎
𝟐 = 𝟎, 𝒖𝑯

𝟐 ≠ 𝟎). 

Here prevention effort for Malaria and treatment effort for HBV infection diseases were 

applied as the intervention strategy. The following figures shows the simulation results, we 

see this prevention strategy has a great impact in controlling the coinfection population. 

 

 

 

 

 

 

 

 

       𝒖𝒎
𝟏 = 𝒖𝑯

𝟏 = 𝒖𝒎
𝟐 = 𝒖𝑯

𝟐 = 𝟎 

        𝒖𝒎
𝟏 ≠ 𝟎, 𝒖𝑯

𝟏 = 𝟎, 𝒖𝒎
𝟐 = 𝟎, 𝒖𝑯

𝟐 ≠ 𝟎  

Figure 3: Effect of prevention effort for Malaria and treatment effort for HBV infection 

disease on coinfectious populations. 

 

 

 

 

 

 

 

 

 

Control using prevention effort for HBV infection disease and treatment effort for 

Malaria (𝒖𝒎
𝟏 = 𝟎, 𝒖𝑯

𝟏 ≠ 𝟎, 𝒖𝒎
𝟐 ≠ 𝟎, 𝒖𝑯

𝟐 = 𝟎). 

Here prevention effort for HBV infection disease and treatment effort for Malaria were 

applied as the intervention strategy. The following figures shows the simulation results, we 

see this prevention strategy has a great impact in controlling the coinfection population. 
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       𝒖𝒎
𝟏 = 𝒖𝑯

𝟏 = 𝒖𝒎
𝟐 = 𝒖𝑯

𝟐 = 𝟎 

        𝒖𝒎
𝟏 = 𝟎, 𝒖𝑯

𝟏 ≠ 𝟎, 𝒖𝒎
𝟐 ≠ 𝟎, 𝒖𝑯

𝟐 = 𝟎 

Figure 4: Effect of prevention using prevention effort for HBV infection disease and 

treatment effort for Malaria on coinfectious populations. 

 

 

 

 

 

 

 

 

 

Control using only treatment effort for both diseases (𝒖𝒎
𝟏 = 𝟎, 𝒖𝑯

𝟏 = 𝟎, 𝒖𝒎
𝟐 ≠ 𝟎, 𝒖𝑯

𝟐 ≠
𝟎). 

Here only treatment effort for both Malaria and HBV infection diseases were applied as 

the intervention strategy. The following figures shows the simulation results, we see this 

prevention strategy has a great impact in controlling the coinfection population. 

 

 

 

 

 

 

 

 

       𝒖𝒎
𝟏 = 𝒖𝑯

𝟏 = 𝒖𝒎
𝟐 = 𝒖𝑯

𝟐 = 𝟎 

        𝒖𝒎
𝟏 = 𝟎, 𝒖𝑯

𝟏 = 𝟎, 𝒖𝒎
𝟐 ≠ 𝟎, 𝒖𝑯

𝟐 ≠ 𝟎  

Figure 5: Effect of using only treatment effort for both diseases on coinfectious 

populations. 
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Control using all the intervention efforts (𝒖𝒎
𝟏 ≠ 𝟎, 𝒖𝑯

𝟏 ≠ 𝟎, 𝒖𝒎
𝟐 ≠ 𝟎, 𝒖𝑯

𝟐 ≠ 𝟎). 

Here all intervention efforts were applied as the intervention strategy. The following 

figures shows the simulation results, we see this strategy has a great impact in controlling 

the coinfection population. 

 

 

 

 

 

 

 

 

       𝒖𝒎
𝟏 = 𝒖𝑯

𝟏 = 𝒖𝒎
𝟐 = 𝒖𝑯

𝟐 = 𝟎 

        𝒖𝒎
𝟏 ≠ 𝟎, 𝒖𝑯

𝟏 ≠ 𝟎, 𝒖𝒎
𝟐 ≠ 𝟎, 𝒖𝑯

𝟐 ≠ 𝟎  

Figure 6: Effect of using all intervention efforts on coinfectious populations. 

Conclusion 

In this paper, the co-infection dynamics of Malaria and HBV diseases was developed. First, 

we performed the analysis of single disease sub models, which include the Malaria – only 

model and the HBV infection – only model. The compartmental model was analyzed to 

fully understand the transmission mechanism of Malaria and HBV coinfection. Our model 

revealed that the disease-free equilibrium of the Malaria and HBV coinfection model is 

locally asymptotically stable whenever the basic reproduction number ℛ0  < 1 and unstable 

whenever basic reproduction number is greater than one. Optimal control analysis was 

carried out on the co-infection model incorporating some controls; the co-infection model 

was extended to include four controls which have a major effect in the control of the 

infected population. The control intervention added to the co-infection model are: Malaria 

prevention effort, HBV Infection prevention effort, Malaria Treatment prevention effort, 

and HBV Infection Treatment effort. The four controls are incorporated into the co-

infection model and the model 77 was obtained. This lead to the optimality system, which 

was solved to obtain the optimal controls which minimizes the compartments that are 
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infected and costs (Theorem 3). Figures 2,3,4,5 and 6 illustrates the numerical simulations 

of the Malaria HBV co-infection model with controls (i.e. model 77) and without controls 

were examined so as to demonstrate the effectiveness of the controls that have been 

considered. Four different approaches for the numerical simulation were considered. 
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Appendix I 

 

Table 1: Description of Variables and Parameters 

Variable Description 

𝑆ℎ(𝑡)  Number of susceptible humans at time 𝑡 

𝐼ℎ𝑚(𝑡) Number of Malaria – only infectious humans at time 𝑡 

𝐼ℎ𝐻(𝑡) Number of HBV – only infectious humans at time 𝑡 

𝐼ℎ𝑚𝐻(𝑡) Number of Malaria/HBV co infectious humans at time 𝑡 

𝑅ℎ𝑚(𝑡) Number of Malaria – only recovered humans at time 𝑡 

𝑅ℎ𝐻(𝑡) Number of HBV – only recovered humans at time 𝑡 

𝑅ℎ𝑚𝐻(𝑡) Number of Malaria/HBV recovered humans at time 𝑡 

𝑆𝑣(𝑡) Number of susceptible mosquitoes at time 𝑡 

𝐼𝑣(𝑡) Number of infectious mosquitoes at time 𝑡 

Parameter Description 

Λℎ Constant recruitment rate from 𝑁ℎ to 𝑆ℎ 

𝜇ℎ Natural death rate of human 

𝑑1 Malaria induced death rate of humans 

𝑑2 HBV induced death rate of humans 

𝛼1 Malaria infection rate of humans 

𝛼2 HBV infection rate of humans 
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𝛽1 Malaria recovery rate for humans from 𝐼ℎ𝑚 state to 𝑅ℎ𝑚 state 

𝛽2 HBV recovery rate for humans from 𝐼ℎ𝐻 state to 𝑅ℎ𝐻 state 

𝛾1 Rate of recruitment from  𝑅ℎ𝑚 state to 𝑆ℎ 

𝛾2 Rate of recruitment from  𝑅ℎ𝐻 state to 𝑆ℎ 

𝛾3 Rate of recruitment from  𝑅ℎ𝑚𝐻 state to 𝑆ℎ 

𝛿(1 − 𝑓)(1 − 𝑒) Rate of recovery from  𝐼ℎ𝑚𝐻 state to 𝑅ℎ𝑚𝐻 

𝛿𝑒 Rate of recovery from  𝐼ℎ𝑚 state to 𝑅ℎ𝑚 

𝛿𝑓(1 − 𝑒) Rate of recovery from  𝐼ℎ𝐻 state to 𝑅ℎ𝐻 

Λ𝑣 Constant recruitment rate of mosquito into 𝑆𝑣  

𝜇𝑣 Natural death rate of mosquito 

𝜉𝑣 Infection rate of mosquito 

𝛼ℎ𝑚 Transmission probability for malaria in mosquitoes 

𝛼𝑚ℎ Transmission probability for malaria in humans 

𝛼𝐻 Transmission probability for HBV infection in humans 

𝑏𝑚 Maximum number of mosquito bites 

 

 

Appendix 2 

Table 2 2Tables of parameter values and compartment initial population 

S/N Parameter Value (day-1) Source  

1 
Λℎ 9.6274 x 10-5  (Onyango, Ogada, Thirika, & 

Lawi, 2018) 

2 𝜇ℎ 0.00004  (Jones, Feng-Bin, & Naveen, 2015) 

3 𝑑1 0.6 (Jones, Feng-Bin, & Naveen, 2015) 

4 𝑑2 0.0141 (Ebenezer, Rahat, & Fatma, 2020) 

5 
𝛼1 0.02  (Segun, Michael, Michael, & 

Maba, 2020) 

6 𝛼2 0.169  (Magaji, Mubarak, & Dauda, 2019) 

7 𝛽1 0.038 – 0.38 (Jones, Feng-Bin, & Naveen, 2015) 

8 
𝛽2 0.09738 – 

0.9738  

(Hussam, et al., 2020) 

9 
𝛾1 0.00156  (Onyango, Ogada, Thirika, & 

Lawi, 2018) 

10 𝛾2 0.01  (Hussam, et al., 2020) 



Abacus (Mathematics Science Series) Vol. 49, No 2, July. 2022 

 

149 
 

11 𝛾3 0.05 Assumed 

12 𝛿 0.45 Assumed 

13 𝑒 0.5 Assumed 

14 𝑓 0.5 Assumed 

15 
Λ𝑣 0.071 (Onyango, Ogada, Thirika, & 

Lawi, 2018) 

16 
𝜇𝑣 0.1429 (Onyango, Ogada, Thirika, & 

Lawi, 2018) 

17 𝜉𝑣 0.312 Assumed 

18 
𝛼ℎ𝑚 0.025 – 0.5 (Onyango, Ogada, Thirika, & 

Lawi, 2018) 

19 
𝛼𝑚ℎ 0.0833 – 0.8333 (Onyango, Ogada, Thirika, & 

Lawi, 2018) 

20 𝛼𝐻 0.5 (Hussam, et al., 2020) 

21 𝑏𝑚 12 (Jones, Feng-Bin, & Naveen, 2015) 

22 Ψ 1.2 Assumed 

 

S/N Compartment Initial Population 

1 𝑆ℎ 200 

2 𝐼ℎ𝑚 250 

3 𝐼ℎ𝐻 250 

4 𝐼ℎ𝑚𝐻 250 

5 𝑅ℎ𝑚 50 

6 𝑅ℎ𝐻 50 

7 𝑅ℎ𝑚𝐻 40 

8 𝑆𝑣 260 

9 𝐼𝑣 120 

 
 


