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ABSTRACT 

The numerical solution of Initial Value Problem of general second order Ordinary Differential Equations 

have been studied in this work. Implicit two-step continuous multistep method for solving this type of 

problem has been developed by collocation and interpolation technique. The continuous method which 

employs Legendre polynomial as basis function yields discrete equivalent as a block method. The main 

scheme obtained was implemented together with the block formulae for the numerical solution of second 

order differential equations. Numerical examples are presented to illustrate the applicability and efficiency 

of the method. The results obtained, when compared with existing methods, are favourable. 
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INTRODUCTION 

Differential equations arise in science, engineering, and diverse fields such as medicine, 

economics, operations research, etc. These are mathematical models that are developed to help in 

the understanding of physical phenomena. This work is concerned with the study of numerical 

solutions of initial value problems in second-order ordinary differential equations. The Initial 

Value Problems (IVP) in ordinary differential equations (ODE) are of the form: 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′), 𝑦(𝑎) = 𝑦0, 𝑦′(𝑎) = 𝑧0, 𝑥 ∈ [𝑎, 𝑏]                                           (1) 

Some of these problems may not be easily solved analytically; hence, numerical schemes are 

developed to approximate the solution. The method of reducing to a system of first-order 

differential equations has been reported to increase the dimension of the problem and therefore 

result in more computational (see Bun and Varsilyer, 1992). 

Many researchers have used block methods. Anake et al. (2012) used power series as the basis 

function. Folaranmi et al. (2017) used Chebyshev as the basis function. Also, Adeniyi et al. 

(2008), Awoyemi and Kayode (2008), Sunday  et al (2022), to mention but a few, have all 

worked on the collocation method for solving equations. 

The implicit LMMs, when implemented in the predictor-corrector mode, are prone to error 

propagation. This disadvantage led to the development of block methods from linear multi-step 
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methods. Apart from being self-starting, the method does not require the development of the 

predictors separately and evaluates fewer functions per step. 

The present step is an extension of the works of Anake et al. (2012) and Folaranmi et al. (2017) 

about the development of hybrid block methods for IVP. A Legendre polynomial basis will be 

employed for the formation of block hybrid schemes. 

 

DEVELOPMENT OF THE METHOD 
For this purpose, we shall approximate the analytical solution of (1) with an approximant of the 

form 

𝑦(𝑥) = ∑ 𝑎𝑗𝑃𝑗

𝑟+𝑠−1

𝑗=0

(𝑥)                                                                                                                (2) 

Where 𝑎𝑗′𝑠 are constants to be determined, 𝑟 is the number of collocation points and 𝑠 is the 

number of interpolation points, on the partition 

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 < 𝑥𝑛+1 < ⋯ < 𝑥𝑛 = 𝑏 

Of the integration interval [𝑎, 𝑏] with a constant step size ℎ, given by 

ℎ = 𝑥𝑛+1 − 𝑥𝑛: 𝑛 = 0,1, …𝑁 − 1 

The function 𝑃𝑗(𝑥) is the 𝑗 − 𝑡ℎ degree Legendre polynomial value in the range of integration of 

(1), that is, in [𝑎, 𝑏]. 
The second derivative of (2) is given by  

𝑦′′(𝑥) = ∑ 𝑎𝑗

𝑟+𝑠−1

𝑗=0

𝑃′′𝑗(𝑥)                                                                                                                        (3) 

Where 𝑥 ∈ [𝑎, 𝑏] and 𝑟 + 𝑠 is the sum of the number of collocation and interpolation points. 

We shall interpolate at least two points to be able to approximate (1) and, to make this happen, 

we proceed by selecting some points 𝑥𝑛+𝑣, where 𝑣 ∈ (0, 𝑛). Then (2) is interpolated at 𝑥𝑛+𝑠 
and its second derivative is collocated at 𝑥𝑛+𝑟, so as to obtain a system of equations which will 

be solved by Gaussian elimination method. We shall consider this method for non-hybrid and 

hybrid methods.  

 

2.1 DEVELOPMENT OF TWO-STEP METHOD 
In deriving this method, we set 𝑠 = 2 and 𝑟 = 3 in (2) and (3) so as to obtain a system of five 

equations, each of degree four as follows: 

∑𝑎𝑗𝑃𝑗

4

𝑗=0

(𝑥) = 𝑦(𝑥)                                                                                                                (4) 

∑𝑎𝑗

4

𝑗=0

𝑃′′𝑗(𝑥) = 𝑓(𝑥, 𝑦, 𝑦
′) (5) 
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We now collocate (5) at 𝑥 = 𝑥𝑛+𝑠 = 0,1 𝑎𝑛𝑑 2, and interpolate (4) at 𝑥 = 𝑥𝑛+𝑟 , 𝑟 = 0,1 𝑎𝑛𝑑 2 

to have a system of equations written in the matrix form 𝐴𝑋 = 𝐵 as, 

[
 
 
 
 
1 −3 13
1 −1 1
0
0
0

0
0
0

12
12
12

−63 321
−1 1
−180
−60
60

1860
180
180 ]

 
 
 
 

[
 
 
 
 
𝑎0
𝑎1
𝑎2
𝑎3
𝑎4]
 
 
 
 

=

[
 
 
 
 
𝑦𝑛
𝑦𝑛+1
ℎ2𝑓𝑛
ℎ2𝑓𝑛+1
ℎ2𝑓𝑛+2]

 
 
 
 

                                                                  (6) 

The equation (6) above is solved by Guassian elimination method to obtain the value of the 

unknown parameters 𝑎𝑗 , 𝑗 = 0,1, … 4 as follows: 

 

𝑎0 =
3

2
𝑦𝑛+1 −

1

2
𝑦𝑛 +

ℎ2

20
𝑓𝑛 +

43ℎ2

120
𝑓𝑛+1 +

ℎ2

120
𝑓𝑛+2

𝑎1 =
1

2
𝑦𝑛+1 −

1

2
𝑦𝑛 +

ℎ2

24
𝑓𝑛 +

17ℎ2

40
𝑓𝑛+1 +

ℎ2

30
𝑓𝑛+2

𝑎2 =
5ℎ2

88
𝑓𝑛+1 −

ℎ2

112
𝑓𝑛 +

11ℎ2

336
𝑓𝑛+2

𝑎3 =
ℎ2

120
𝑓𝑛+2 −

ℎ2

120
𝑓𝑛+1

𝑎4 =
ℎ2

1680
𝑓𝑛 −

ℎ2

840
𝑓𝑛+1 +

ℎ2

1680
𝑓𝑛+2 }

 
 
 
 
 

 
 
 
 
 

                                                                   (7) 

Substituting (7) into (2) yields a continuous implicit two step method in the form 

𝑦(𝑥) = 𝛼0(𝑥)𝑦𝑛 + 𝛼1(𝑥)𝑦𝑛+1 + ℎ
2∑𝛽𝑗

2

𝑗=0

(𝑥)𝑓𝑛+𝑗                                                             (8) 

where 𝛼𝑗(𝑥) and 𝛽𝑗(𝑥) are continuous coefficients. From (8), we get the parameters 𝛼𝑗(𝑥) and 

𝛽𝑗(𝑥) as: 
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𝛼0 =
(2ℎ − 2𝑥 + 2𝑥𝑛)

2ℎ

𝛼1 =
(1 − (2ℎ − 2𝑥 + 2𝑥𝑛)

2ℎ

𝛽0 =
(ℎ − 𝑥 + 𝑥𝑛)

3

12ℎ3
+
(ℎ − 𝑥 + 𝑥𝑛)

4

24ℎ4
−
(2ℎ − 2𝑥 + 2𝑥𝑛)

24ℎ

−
(6ℎ − 6𝑥 + 6𝑥𝑛)

112ℎ
+
(20ℎ − 20𝑥 + 20𝑥𝑛)

1680ℎ

𝛽1 =
(ℎ − 𝑥 + 𝑥𝑛)

2

2ℎ2
−
(ℎ − 𝑥 + 𝑥𝑛)

4

12ℎ4
−
(17(2ℎ − 2𝑥 + 2𝑥𝑛))

40ℎ

+
(5(6ℎ − 6𝑥 + 6𝑥𝑛))

84ℎ
+ −

(12ℎ − 12𝑥 + 12𝑥𝑛)

120ℎ
−
(20ℎ − 20𝑥 + 20𝑥𝑛)

840ℎ

𝛽2 =
(ℎ − 𝑥 + 𝑥𝑛)

4

24ℎ4
−
(ℎ − 𝑥 + 𝑥𝑛)

4

12ℎ3
−
(2ℎ − 2𝑥 + 2𝑥𝑛)

30ℎ

+
(11(6ℎ − 6𝑥 + 6𝑥𝑛))

336ℎ
−
(12ℎ − 12𝑥 + 12𝑥𝑛)

120ℎ
+
(20ℎ − 20𝑥 + 20𝑥𝑛)

1680ℎ }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

                        (9) 

 

Evaluating (8)  at 𝑥𝑛+2, the main method is obtained as  

𝑦𝑛+2 + 𝑦𝑛 − 2𝑦𝑛+1 =
ℎ2

12
(𝑓𝑛 + 10𝑓𝑛+1 + 𝑓𝑛+2)                                                                                (10) 

 

The block methods are derived by evaluating the first derivative of (8) in order to obtain 

additional equations needed to couple with (10). 
Differentiating (8) we obtain 

𝑦′(𝑥) =∑𝛼𝑗
′

1

𝑗=0

(𝑥)𝑦𝑛+𝑗 +∑𝛽𝑗
′

2

𝑗=0

(𝑥)𝑓𝑛+𝑗                                                                                          (11) 

Where  
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𝛼′0 =
−1

ℎ

𝛼1 =
1

ℎ

𝛽′
0
=

1

18ℎ
−
(ℎ − 𝑥 + 𝑥𝑛)

3

6ℎ4
−
(ℎ − 𝑥 + 𝑥𝑛)

2

4ℎ3
+
(2ℎ − 12𝑥 + 12𝑥𝑛)

112ℎ2
−
(180ℎ − 180𝑥 + 180𝑥𝑛)

1680ℎ2

𝛽′
1
=
(ℎ − 𝑥 + 𝑥𝑛)

3

3ℎ4
+

5

12ℎ
−
(5(12ℎ − 14𝑥 + 12𝑥𝑛))

84ℎ2
−
(60ℎ − 60𝑥 + 60𝑥𝑛)

120ℎ2
+
(180ℎ − 180𝑥 + 80𝑥𝑛)

120ℎ2

𝛽′
2
=
(ℎ − 𝑥 + 𝑥𝑛)

2

4ℎ3
−
(ℎ − 𝑥 + 𝑥𝑛)

3

6ℎ4
−

1

24ℎ
−
(11(2ℎ − 12𝑥 + 3𝑥𝑛))

336ℎ2

}
 
 
 
 
 
 

 
 
 
 
 
 

 (12) 

Evaluating (12)  at 𝑥𝑛, 𝑥𝑛+1 and 𝑥𝑛+2, we get the following discrete derivative schemes: 

ℎ𝑦′
𝑛
= −𝑦𝑛 + 𝑦𝑛+1 −

ℎ2

24
(7𝑓𝑛 + 6𝑓𝑛+1 − 𝑓𝑛+2)                                                                        (13) 

ℎ𝑦′
𝑛+1

= −𝑦𝑛 + 𝑦𝑛+1 +
ℎ2

24
(3𝑓𝑛 + 10𝑓𝑛+1 − 𝑓𝑛+2)                                                                   (14) 

ℎ𝑦′
𝑛+2

= −𝑦𝑛 + 𝑦𝑛+1 +
ℎ2

24
(𝑓𝑛 + 20𝑓𝑛+1 + 9𝑓𝑛+2)                                                                   (15) 

Solving equations (10), (13), (14) 𝑎𝑛𝑑 (15) simultaneously, we obtain the following explicit 

results 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦
′
𝑛
+
ℎ2

24
(7𝑓𝑛 + 6𝑓𝑛+1 − 𝑓𝑛+2)                                                                             (16) 

𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦
′
𝑛
+
2ℎ2

3
(𝑓𝑛 + 2𝑓𝑛+1)                                                                                         (17) 

𝑦′
𝑛+1

= 𝑦′
𝑛
+
ℎ

12
(5𝑓𝑛 + 8𝑓𝑛+1 − 𝑓𝑛+2)                                                                                         (18) 

𝑦′
𝑛+2

= 𝑦′
𝑛
+
ℎ

3
(𝑓𝑛 + 4𝑓𝑛+1 + 𝑓𝑛+2)                                                                                               (19) 

3. ANALYSIS OF THE METHOD 
In analyzing the properties of this method, we consider (10) and (16) − (19) in order to 

determine the order, error constant, consistency and zero stability of the two-step method. 

Equation (10) derived is a discrete scheme belonging to the class of (20)  𝐿𝑀𝑀𝑠 of the form 

∑𝛼𝑗

𝑘

𝑗=0

𝑦𝑛+𝑗 = ℎ2∑𝛽𝑗

𝑘

𝑗=0

𝑓𝑛+𝑗                                                                                  (20) 

3.1  Order and Error Constant 

Consider the 𝐿𝑀𝑀(20) associated with the linear difference operator 𝐿 defined by 
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𝐿[𝑦(𝑥); ℎ] = ∑[𝛼𝑗𝑦

𝑘

𝑗=0

(𝑥 + 𝑗ℎ) − ℎ2𝛽𝑗𝑦
′′(𝑥 + 𝑗ℎ)]                                      (21) 

Where 𝑦(𝑥) is an arbitrary function, continuously differentiable on [𝑎, 𝑏].  
Expanding (21) by Taylor series, we have 

𝐿[𝑦(𝑥); ℎ] = 𝐶0𝑦(𝑥) + 𝐶1𝑦
′(𝑥) + ⋯+ 𝐶𝑞ℎ

𝑞𝑦(𝑞)(𝑥) + ⋯                       (22) 

where  

𝐶0 = 𝛼0 + 𝛼1 + 𝛼2 +⋯+ 𝛼𝑘 

𝐶1 = 𝛼1 + 2𝛼2 +⋯+ 𝑘𝛼𝑘 

𝐶2 =
1

2!
(𝛼1 + 2

2𝛼2 +⋯+ 𝑘
2𝛼𝑘) − (𝛽0 + 𝛽1 + 𝛽2 +⋯+ 𝛽𝑘) 

………………………………………………………………………………. 
………………………………………………………………………………. 
………………………………………………………………………………. 

𝐶𝑞 =
1

𝑞!
(𝛼1 + 2

𝑞𝛼2 +⋯+ 𝑘𝑞𝛼𝑘) −
1

(𝑞 − 2)
(𝛽1 + 2

𝑞−2𝛽2 +⋯+ 𝑘
𝑞−2𝛽𝑘), 𝑞 ≥ 3 

 

The method is of order 𝒑 if 

𝐶0 = 𝐶1 = 𝐶2 +⋯+= 𝐶𝑝 = 𝐶𝑝+1 = 0  and  𝐶𝑝+2 ≠ 0. 

The 𝐶𝑝+2 ≠ 0 is called the error constant, and 𝐶𝑝+2ℎ
𝑝+2𝑦(𝑝+2)(𝑥𝑛) is the principal local 

truncation error at the point 𝑥𝑛. 

We express (10) in the form 

𝑦𝑛+2 + 𝑦𝑛 − 2𝑦𝑛+1 =
ℎ2

12
(𝑓𝑛 + 10𝑓𝑛+1 + 𝑓𝑛+2) = 0                                                       (23) 

Expressing (23) in Taylor series, we have 

𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦
′ +

(2ℎ)2𝑦′′

2!
+
(2ℎ)3𝑦′′′

3!
+
(2ℎ)4𝑦𝑖𝑣

4!
+
(2ℎ)5𝑦𝑣

5!
+
(2ℎ)6𝑦𝑣𝑖

6!
+
(2ℎ)2𝑦𝑣𝑖𝑖

7!
            (24) 

 

Which gives 

𝐶0 = 1 − 1 = 0 

𝐶1 = 1 − 1 = 0 

𝐶2 =
3

2
−
3

2
= 0 

𝐶3 =
4

2
−
2

3
−
4

3
= 0 

𝐶3 =
4

2
−
2

3
−
4

3
= 0 

𝐶4 =
8

6
−
4

3
= 0 
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𝐶5 =
16

24
−
4

6
= 0 

𝐶6 =
32

120
−
4

18
=
2

45
 

Thus, equation (10) is of order 𝑝 = 4 and error constant 𝐶𝑝+2 =
2

45
 

 

3.2  Consistency 

The linear multistep method (20) is said to be consistent if it has order 𝑝 ≥ 1 and the first and 

second characteristic polynomials which are defined as 

𝜌(𝑧) =∑𝛼𝑗𝑧
𝑗

𝑘

𝑗=0

 

𝜎(𝑧) =∑𝛽𝑗𝑧
𝑗

𝑘

𝑗=0

 

where 𝑧, the principal root, satisfies the following conditions: 

(𝑖)∑𝛼𝑗

𝑘

𝑗=0

= 0 

(𝑖𝑖)  𝜌(1) = 𝜌′(1) = 0 

and 

𝜌′′(1) = 2! 𝜎(1) 
The two-step method derived is of order 𝑝 = 4 > 1. 

Conditions (𝑖) − (𝑖𝑖𝑖) are investigated below. 

In equation (10), 
𝛼2 = 1, 𝛼1 = −2 𝑎𝑛𝑑 𝛼0 = 1 

∑𝛼𝑗 = 1 − 2 + 1 = 0, 𝑗 = 0, 1, 2 

𝜌(𝑧) = 𝑧2 − 2𝑧 + 1 

𝜎(𝑧) =
𝑧2 − 2𝑧 + 1

12
 

𝜌(1) = 1 − 2 + 1 = 0 

𝜌′(𝑧) = 2𝑧 − 2 

𝜌′(1) = 2(1) − 2 = 0 

Therefore, 𝜌(1) = 𝜌′(1) = 0. 

Also, 𝜌′′(𝑧) = 2 

Hence, 𝜌′′(1) = 2 

𝜎(1) =
1 + 10 + 1

12
= 1 

2! 𝜎(1) = 2 
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Therefore, 𝜌′′(𝑧) = 2! 𝜎(1) = 2 

Since the conditions are satisfied then, the method is consistent. 

 

3.3  Zero-Stability 

The linear multistep method (20) is said to be zero-stable if no root of the first characteristic 

polynomial 𝜌(𝑧) has modulus greater than one, and if every root of modulus one has multiplicity 

not greater than two, see (Lambert, 1973). 

The first characteristic polynomial of the method is defined as  

𝜌(𝑧) = 𝑧2 − 2𝑧 + 1 

Equating 𝜌(𝑧) to zero and solving for 𝑧, we have 𝑧 = 1 (𝑡𝑤𝑖𝑐𝑒). 
Hence, |𝑧| = 1 is simple. The method is zero stable. 

The roots of the derived block method have been verified to be less than or equal to 1 and |𝑧| =
1. Therefore, the scheme is zero stable. 

 

4.  Numerical Examples 
 

We consider here the application of the derived scheme on four tests problems. 

Problem 1 

𝑦′′ − 100𝑦 = 0, 0 ≤ 𝑥 ≤ 0.12 

𝑦(0) = 1, 𝑦′(0) = −10   
ℎ = 0.01  

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑦 = 𝑒−10𝑥 

𝑺𝒐𝒖𝒓𝒄𝒆: 𝑨𝒓𝒆𝒐 (𝟐𝟎𝟏𝟑) 
Problem 2 

𝑦′′ = 2𝑦 − 𝑦′, 0 ≤ 𝑥 ≤ 0.4 

𝑦(0) = 0, 𝑦′(0) = 1  
ℎ = 0.1  

𝐶𝑙𝑜𝑠𝑒𝑑 𝑓𝑜𝑟𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑦(𝑥) =
𝑒𝑥 − 𝑒−2𝑥

3
 

𝑺𝒐𝒖𝒓𝒄𝒆:𝑨𝒅𝒆𝒏𝒊𝒚𝒊 𝒆𝒕 𝒂𝒍 (𝟐𝟎𝟎𝟖) 
Problem 3 (A Nonlinear Problem) 

𝑦′′ − (𝑦′)2 = 0, 0 ≤ 𝑥 ≤ 0.03125 

𝑦(0) = 1, 𝑦′(0) =
1

2
 

ℎ = 0.003125  

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑦(𝑥) = 1 +
1

2
𝑙𝑛
2 + 𝑥

2 − 𝑥
 

Problem 4 

𝑦′′ + 𝑦 = 0, 0 ≤ 𝑥 ≤ 1.2 

𝑦(0) = 1, 𝑦′(0) = 1  
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ℎ = 0.1 

𝑇𝑟𝑢𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑦(𝑥) = 𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥 

𝑺𝒐𝒖𝒓𝒄𝒆: 𝒀𝒂𝒉𝒂𝒚𝒂 𝒂𝒏𝒅 𝑩𝒂𝒅𝒎𝒖𝒔 (𝟐𝟎𝟎𝟗) 
 

4.1 Tables of Results 
Table 1: Numerical Results for Problem 1 

𝑿 𝑵𝒆𝒘 𝑴𝒆𝒕𝒉𝒐𝒅 𝑬𝒙𝒂𝒄𝒕 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 

0.01 0.9048376227 0.9048374180 2.0466404049𝑒−007 

0.02 0.8187311683 0.8187307531 4.1522201821𝑒−007 

0.03 0.7408188198 0.7408182207 5.9911828210𝑒−007 

0.04 0.6703208381 0.6703200460 7.92064360656𝑒−007 

0.05 0.6065316274 0.6065306597 9.6768736657𝑒−007 

0.06 0.5488127917 0.5488116361 1.1556059734𝑒−006 

0.07 0.4965866382 0.4965853038 1.3344085905𝑒−006 

0.08 0.4493304927 0.4493289641 1.5285827784𝑒−006 

0.09 0.3328732333 0.4065696597 1.7211594008𝑒−006 

0.10 0.3011966014 0.3678794412 1.9326285576𝑒−006 

0.11 0.2725344350 0.3328710837 −2.1496019205𝑒−006 

0.12 0.2465998860 0.3011942119 −2.389487797904𝑒−006 

 

 

Table 2: Numerical Results for Problem 2 

𝑋 𝑵𝒆𝒘 𝑴𝒆𝒕𝒉𝒐𝒅 𝑬𝒙𝒂𝒄𝒕 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 
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0.1 0.09547805317 0.095480055 2.0018292220𝑒−006 

0.2 0.1836904268 0.1836942374 3.8105748434𝑒−006 

0.3 0.2670106955 0.2670157238 5.0283273255𝑒−006 

0.4 0.3474923823 0.3474985778 6.1955413495𝑒−006 

 

 

Table 3: Numerical Results for Problem 3 

𝑿 𝑵𝒆𝒘 𝑴𝒆𝒕𝒉𝒐𝒅 𝑬𝒙𝒂𝒄𝒕 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 

0.003125 1.001563722 1.0015625012 1.2207284330𝑒−006 

0.006250 1.003129893 1.0031250102 4.8828274141𝑒−006 

0.009375 1.004698521 1.0046875343 1.0986667271𝑒−005 

0.0125 1.006269613 1.0062500814 1.9531617883𝑒−005 

0.015625 1.007843177 1.0078126590 3.0518048460𝑒−005 

0.01875 1.009419222 1.0093752747 4.3947327311𝑒−005 

0.021875 1.010997754 1.0109379362 5.9817821637𝑒−005 

0.025 1.012578782 1.0125006511 7.8130897291𝑒−005 

0.028125 1.014162314 1.0140634271 9.8886918562𝑒−005 

0.03125 1.015748357 1.0148564487 8.9190834074𝑒−004 

 

 

Table 4: Numerical Results for Problem 4 

𝑿 𝑵𝒆𝒘 𝑴𝒆𝒕𝒉𝒐𝒅 𝑬𝒙𝒂𝒄𝒕 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑬𝒓𝒓𝒐𝒓 
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0.1 1.094837380 1.0948375819 2.0192485274𝑒−007 

0.2 1.178735502 1.1787359086 4.0663630285𝑒−007 

0.3 1.250856132 1.2508566958 5.6378694601𝑒−007 

0.4 1.310478617 1.3104793363 7.1931153589𝑒−007 

0.5 1.357007281 1.3570081005 8.1949457597𝑒−007 

0.6 1.389977171 1.3899780883 9.1730471396𝑒−007 

0.7 1.409058921 1.4090598745 9.5352218010𝑒−007 

0.8 1.414061814 1.4140628002 9.8624668787𝑒−007 

0.9 1.404935922 1.4049368779 9.5589814796𝑒−007 

1.0 1.381772368 1.3817732907 9.2267603601𝑒−007 

1.1 1.344802653 1.3448034815 8.2848701299𝑒−007 

1.2 1.294396109 1.2943968404 7.3144389989𝑒−007 

 

 

 

 

 

 

5. Conclusion 

The continuous non-hybrid two-step method has been developed by the interpolation and 

collocation technique with Legendre as the basis function. The analysis of the method has also 

been carried out, and the derived schemes are zero-stable and consistent; hence they are 

convergent. Four test problems have been considered to test the efficiency and accuracy of our 

method. It is obvious from our tables of results that the method is efficient and accurate since the 

approximation closely approximates the analytic solution. 
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