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Abstract 

Models containing numerous response and predictive time variables, known as 

multivariate autoregressive models, establish a link between each response and the lag 

terms of both the response and predictive variables. Multivariate time series models, like 

univariate time series models, contain some basic properties that distinguish each model. 

The basic features of Multivariate Autoregressive Models (MARM), also known as Vector 

Autoregressive Models (VARM), are investigated in this study. The work focuses on using 

model parameter estimations to derive the variance, autocorrelations, and cross-

autocorrelations of multi-dimensional VAR models. The features of broad VAR models, 

such as variances, autocovariances, cross-autocovariances, autocorrelations, and cross-

autocorrelations, are calculated and validated using empirical examples. 

 

Keywords: Vector Autoregressive Models, Autocovariance/Cross-Autocovariance and 

Autocorrelation/Cross-autocorrelations 

 

Introduction 

Multivariate time series models are time series models that include numerous response and 

predictive time variables and establish a relationship between the response and lag terms 

of both the response and predictive time processes. The models are multi-parameter 

extensions of univariate time series that account for the distributions of predictive time 

variables in each response variable. Every reaction time variable is a function of its 

previous values, much like in univariate time series. What distinguishes multivariate time 

series models from the univariate is that each response time variable is a function of its 

past values and other time variables. With multivariate time series models, there is a feed-

forward and feedback mechanism between each response and predictive time variables, 

which implies that each response time variable in a given multivariate time series model is 

a predictor term to another in a set of multivariate time series models. The models are also 

known as VAR models. The VAR models are n-dimensional response and predictor time 

variables characterized by autoregressive processes. If the Vector time variable is 

characterized by a moving average process, the model is known as Vector Moving Average 
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(VMA) or Moving Average Vector (MAV) model. VAR model is described by [2] as one 

of the most successful, flexible, and easy-to-use models to capture the dynamic behaviour 

of multivariate time series. VAR models are popular models in studying the behaviour and 

feed-forward and feedback mechanism amongst macroeconomic variables. The flexibility 

of multivariate time series models, which gives room for the study of the effect of other 

time variables on another is the advantage it has over the univariate time series model. 

These are evident when modelling multiple set of economic and financial time series. 

Identification of the basic properties that characterize the behaviour of a model has always 

been the tradition in time series and other areas of statistics. In univariate time series, there 

are underlying properties that explain the nature of a given model. Fundamentally, some 

basic properties of a univariate autoregressive model include the variance, autocovariance, 

autocorrelation structures, etc. As an extension of the univariate autoregressive model, 

Vector Autoregressive Models are a set of models that have gained prominence in 

multivariate time series modelling due to their wide areas of applications in economic and 

financial studies.   

The interest in this paper is on the basic properties of multivariate autoregressive models. 

These include variances, autocovariances, cross-covariances, autocorrelations, and cross-

autocorrelations. Properties of Bayesian Multivariate Autoregressive Time Series Models 

are presented, which compared the small sample performance of Bayesian Multivariate 

Vector Autoregressive time series models relative to frequent power and parameter 

estimation bias, [6]. Some basic properties of n-dimensional vector time series which 

include cross-autocovariances and cross-autocorrelations have been obtained by [1]. The 

work did not consider the estimates of the model coefficients, rather used lagged variables 

for computations of cross-autocovariances and cross-autocorrelations for stationary 

multivariate time series. Still on multivariate time series are frequentist and Bayesian 

methods considered for the estimation of structural vector autoregressive models by [4]. 

Network vector autoregressive (NAR) model have been introduced by [10]. The work 

focused on a large-scale social network with a continuous response observed for each node 

at equally spaced time points. The response from different nodes constitutes an ultra-high-

dimensional vector whose time series dynamics is to be investigated. The NAR assumes 

each node’s response at a given time is a function of its previous time value, the average 

of its connected neighbours, a set of node-specific covariates and independent noise. The 

NAR model is estimated using an ordinary least squares type of estimators, and its 

asymptotic properties are investigated. Investigation of the stationarity of multivariate time 

series using autocorrelations and cross-autocorrelations with three response time variables 

representing urban, rural and average consumer price indices and Nigeria's crude oil 

production quantity and price volatilities have been carried out by [8] and [9]. The two 
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papers adopted lag terms in obtaining the autocorrelations and cross-autocorrelations to 

investigate the stationarity of multivariate time series through the positive definiteness 

property. On the probabilistic properties of autoregressive models, [7]. The theoretical 

properties were presented and demonstrated using simulated and real-world examples. 

  

A number of published works have little or no contributions in building up models for 

computations of variances, autocovariances, cross-autocovariances, autocorrelations, 

cross-autocorrelations from multivariate time series models. To bridge the gap, this paper 

proposes the use of parametric model to develop models for estimations of the fundamental 

properties of Vector Autoregressive Models (VARM).  

 

 

Statistical Method 

This section considers the general Multivariate Autoregressive Time Series and proposed 

method of derivation of its properties. 

  

Definition 

According to [3], Multivariate Autoregressive Models are presented as, 

𝑌𝑖𝑡 = 𝜑𝑖 + ∑ ∑ 𝛽𝑘.𝑖𝑗𝑌𝑗𝑡−𝑘

𝑛

𝑗=1

𝑝

𝑘=1

+𝜖𝑖𝑡 , 𝑖

= 1, … , 𝑚                                                                             (1) 

 

where, 𝑌1𝑡(𝑖=1,…,𝑚) response time variables, 𝑌𝑗𝑡−𝑘 are the lag terms with parameter matrix 

𝛽𝑘.𝑖𝑗,  𝜑𝑖 are constants and 𝜖𝑖𝑡 errors associated with the response time variables. On the 

assumption that 𝑌1𝑡(𝑖=1,…,𝑚) are stationary time series processes distributed about the 

constant origin, 

 

 𝐸(𝑌1𝑡) = 𝐸(𝑌2𝑡) = ⋯ = 𝐸(𝑌𝑚𝑡) = 0 => 𝜑1 = 𝜑2 = ⋯ = 𝜑𝑚 = 0. 
 

For 𝑖 = 1,2, … , 𝑚; 𝑗 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 = 1,2,…,P. Equation (1) is expanded as follows, 

 

𝑌1𝑡

= 𝜑1.11𝑌1𝑡−1 + 𝜑1.12𝑌2𝑡−1 + ⋯ + 𝜑1.1𝑛𝑌𝑛𝑡−1 + 𝜑2.11𝑌1𝑡−2 + 𝜑2.12𝑌2𝑡−2 + ⋯
+ 𝜑2.1𝑛𝑌𝑛𝑡−2 + ⋯ + 𝜑𝑝.11𝑌1𝑡−𝑝 + 𝜑𝑝.12𝑌2𝑡−𝑝 + ⋯ + 𝜑𝑝.1𝑛𝑌𝑛𝑡−𝑝

+ 𝜖1𝑡                                                                                                                             (2) 
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𝑌2𝑡

= 𝜑1.21𝑌1𝑡−1 + 𝜑1.22𝑌2𝑡−1 + ⋯ + 𝜑1.2𝑛𝑌𝑛𝑡−1 + 𝜑2.21𝑌1𝑡−2 + 𝜑2.22𝑌2𝑡−2 + ⋯
+ 𝜑2.2𝑛𝑌𝑛𝑡−2 + ⋯ + 𝜑𝑝.21𝑌1𝑡−𝑝 + 𝜑𝑝.22𝑌2𝑡−𝑝 + ⋯ + 𝜑𝑝.2𝑛𝑌𝑛𝑡−𝑝

+ 𝜖2𝑡                                                                                                                             (3) 

            ⋮                                                                                         ⋮ 
𝑌𝑚𝑡

= 𝜑1.𝑚1𝑌1𝑡−1 + 𝜑1.𝑚2𝑌2𝑡−1 + ⋯ + 𝜑1.𝑚𝑛𝑌𝑛𝑡−1 + 𝜑2.𝑚1𝑌1𝑡−2 + 𝜑2.𝑚2𝑌2𝑡−2 + ⋯
+ 𝜑2.𝑚𝑛𝑌𝑛𝑡−2 + ⋯ + 𝜑𝑝.𝑚1𝑌1𝑡−𝑝 + 𝜑𝑝.𝑚2𝑌2𝑡−𝑝 + ⋯ + 𝜑𝑝.𝑚𝑛𝑌𝑛𝑡−𝑝

+ 𝜖𝑚𝑡                                                                                                                             (4) 

 

Equations (2), (3) and (4) are the 𝑝𝑡ℎ order Multivariate Autoregressive Models. 

The coefficients  𝛽1.𝑖𝑗   are first time lag parameters, indicating the contributions of 

𝑌𝑗𝑡−1(𝑗=1,…,𝑛) to the response time variable, 𝑌𝑖𝑡(𝑖=1,…,𝑚).  𝜖𝑖𝑡(𝑖=1,…,𝑚)~𝑁(0, 𝜎𝜖𝑖𝑡
2 ).  

 

Variance, Auto-covariance and Cross-Autocovariance  

Recall that,  

 

𝐶𝑂𝑉(𝑌𝑡 , 𝑌𝑡+𝑘) = 𝐸(𝑌𝑡𝑌𝑡+𝑘) −
𝐸(𝑌𝑡)𝐸(𝑌𝑡+𝑘),                                                                                  (5)  

 

𝐸(𝑌𝑡) = 𝐸(𝑌𝑡+𝑘) = 0 

 

Variance, Autocovariance and Autocorrelation of 𝒀𝟏𝒕   

Variance of 𝒀𝟏𝒕 

Multiplying Equation (2) by 𝑌1𝑡 and taking the expectations, 

 

𝐸(𝑌1𝑡𝑌1𝑡)

= 𝐸[𝑌1𝑡(𝜑1.11𝑌1𝑡−1 + 𝜑1.12𝑌2𝑡−1 + ⋯ + 𝜑1.1𝑛𝑌𝑛𝑡−1 + 𝜑2.11𝑌1𝑡−2 + 𝜑2.12𝑌2𝑡−2 + ⋯

+ 𝜑2.1𝑛𝑌𝑛𝑡−2 + ⋯ + 𝜑𝑝.11𝑌1𝑡−𝑝 + 𝜑𝑝.12𝑌2𝑡−𝑝 + ⋯ + 𝜑𝑝.1𝑛𝑌𝑛𝑡−𝑝

+ 𝜖1𝑡)]                                                                                                                          (6) 

 

𝐸(𝑌1𝑡
2 ) = 𝜑1.11𝐸(𝑌1𝑡𝑌1𝑡−1) + 𝜑1.12𝐸(𝑌1𝑡𝑌2𝑡−1) + ⋯ + 𝜑1.1𝑛𝐸(𝑌1𝑡𝑌𝑛𝑡−1)

+ 𝜑2.11𝐸(𝑌1𝑡𝑌1𝑡−2) + 𝜑2.12𝐸(𝑌1𝑡𝑌2𝑡−2) + ⋯ + 𝜑2.1𝑛𝐸(𝑌1𝑡𝑌𝑛𝑡−2) + ⋯
+ 𝜑𝑝.11𝐸(𝑌1𝑡𝑌1𝑡−𝑝) + 𝜑𝑝.12𝐸(𝑌1𝑡𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.1𝑛𝐸(𝑌1𝑡𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌1𝑡𝜖1𝑡)                             (7) 
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𝐸(𝑌1𝑡
2 ) = 𝛾1𝑡,1𝑡 (Variance of 𝑌1𝑡) 

 

𝛾1𝑡,1𝑡 = 𝜑1.11𝛾1𝑡,1𝑡(1) + 𝜑1.12𝛾1𝑡,2𝑡(1) + ⋯ + 𝜑1.1𝑛𝛾1𝑡,𝑛𝑡(1) + 𝜑2.11𝛾1𝑡,1𝑡(2) + 𝜑2.12𝛾1𝑡,2𝑡(2)

+ ⋯ + 𝜑2.1𝑛𝛾1𝑡,𝑛𝑡(2) + ⋯ + 𝜑𝑝.11𝛾1𝑡,1𝑡(𝑝) + 𝜑𝑝.12𝛾1𝑡,2𝑡(𝑝) + ⋯

+ 𝜑𝑝.1𝑛𝛾1𝑡,𝑛𝑡(𝑝)

+ 𝜎𝜖1𝑡
2                                                                                             (8) 

 

Equation (8) further reduces to 

 

𝛾1𝑡,1𝑡

= ∑ ∑ 𝜑𝑘.1𝑗𝛾1𝑡,𝑗𝑡(𝑘)

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                                          (9) 

 

From Equation (9), 𝛾1𝑡,1𝑡(𝑘=1,…,𝑝) are autocovariances of 𝑌1𝑡; 𝛾1𝑡,2𝑡(𝑘=1,…,𝑝),…, 

𝛾1𝑡,𝑛𝑡(𝑘=1,…,𝑝) are cross-autocovariances of 𝑌1𝑡 and 𝑌2𝑡,…,𝑌𝑛𝑡 ; 𝜑𝑘.1𝑗 is the parameter of 𝑗𝑡ℎ 

predictive variable to 𝑌1𝑡 at 𝑘𝑡ℎ lag  and 𝐸(𝑌1𝑡𝜖1𝑡) = 𝜎𝜖1𝑡
2 (correlated stationary processes 

at zero time lag), which represent variance of the error term of 𝑌1𝑡. 

 

Autocovariances and Autocorrelations of 𝒀𝟏𝒕 

 

i. Multiplying Equation (2) by 𝑌1𝑡−1 and taking the expectations, 

 

𝐸(𝑌1𝑡𝑌1𝑡−1)
= 𝜑1.11𝐸(𝑌1𝑡−1𝑌1𝑡−1) + 𝜑1.12𝐸(𝑌1𝑡−1𝑌2𝑡−1) + ⋯ + 𝜑1.1𝑛𝐸(𝑌1𝑡−1𝑌𝑛𝑡−1

+ 𝜑2.11𝐸(𝑌1𝑡−1𝑌1𝑡−2) + 𝜑2.12𝐸(𝑌1𝑡−1𝑌2𝑡−2) + ⋯ + 𝜑2.1𝑛𝐸(𝑌1𝑡−1𝑌𝑛𝑡−2) + ⋯
+ 𝜑𝑝.11𝐸(𝑌1𝑡−1𝑌1𝑡−𝑝) + 𝜑𝑝.12𝐸(𝑌1𝑡−1𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.1𝑛𝐸(𝑌1𝑡−1𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌1𝑡−1𝜖1𝑡)                                                                                                           (10) 

 

𝐸(𝑌1𝑡𝑌1𝑡−1) = 𝛾1𝑡,1𝑡(1) (autocovariance of 𝑌1𝑡  𝑎𝑡 𝑘 = 1) 

 

𝛾1𝑡,1𝑡(1)

= 𝜑1.11𝛾1𝑡,1𝑡 + 𝜑1.12𝛾1𝑡,2𝑡 + ⋯ + 𝜑1.1𝑛𝛾1𝑡,𝑛𝑡 + 𝜑2.11𝛾1𝑡,1𝑡(1) + 𝜑2.12𝛾1𝑡,2𝑡(1) + ⋯

+ 𝜑2.1𝑛𝛾1𝑡,𝑛𝑡(1) + ⋯ + 𝜑𝑝.11𝛾1𝑡,1𝑡(𝑝−1) + 𝜑𝑝.12𝛾1𝑡,2𝑡(𝑝−1) + ⋯

+ 𝜑𝑝.1𝑛𝛾1𝑡,𝑛𝑡(𝑝−1)                                                                                                 (11) 



Abacus (Mathematics Science Series) Vol. 49, No 2, July. 2022 

 

294 
 

 

𝐸(𝑌1𝑡−1𝜖1𝑡) = 0 (uncorrelated processes) 

𝛾1𝑡,1𝑡(1) = ∑ ∑ 𝜑𝑘.1𝑗𝛾1𝑡(1),𝑗𝑡(𝑘) 

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                            (12) 

 

Dividing Equation (12) by 𝛾1𝑡,1𝑡 produces the autocorrelation   

 

𝜌1𝑡,1𝑡(1) =
∑ ∑ 𝜑𝑘.1𝑗𝛾1𝑡(1),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

𝛾1𝑡,1𝑡

                                                                                    (13) 

 

𝜌1𝑡,1𝑡(1) is the autocorrelation of 𝑌1𝑡 𝑎𝑛𝑑 𝑌1𝑡(1) 

 

ii. Multiplying Equation (2) by 𝑌1𝑡−2 and taking the expectations, 

 

𝐸(𝑌1𝑡𝑌1𝑡−2)
= 𝜑1.11𝐸(𝑌1𝑡−2𝑌1𝑡−1) + 𝜑1.12𝐸(𝑌1𝑡−2𝑌2𝑡−1) + ⋯ + 𝜑1.1𝑛𝐸(𝑌1𝑡−2𝑌𝑛𝑡−1

+ 𝜑2.11𝐸(𝑌1𝑡−2𝑌1𝑡−2) + 𝜑2.12𝐸(𝑌1𝑡−2𝑌2𝑡−2) + ⋯ + 𝜑2.1𝑛𝐸(𝑌1𝑡−2𝑌𝑛𝑡−2) + ⋯
+ 𝜑𝑝.11𝐸(𝑌1𝑡−2𝑌1𝑡−𝑝) + 𝜑𝑝.12𝐸(𝑌1𝑡−2𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.1𝑛𝐸(𝑌1𝑡−2𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌1𝑡−2𝜖1𝑡)                                                                                                        (14) 

 

𝐸(𝑌1𝑡𝑌1𝑡−2) = 𝛾1𝑡,1𝑡(2) (autocovariance of 𝑌1𝑡  𝑎𝑡 𝑘 = 2) 

 

𝛾1𝑡,1𝑡(2)

= 𝜑1.11𝛾1𝑡,1𝑡(1) + 𝜑1.12𝛾2𝑡,1𝑡(1) + ⋯ + 𝜑1.1𝑛𝛾𝑛𝑡,1𝑡(1) + 𝜑2.11𝛾1𝑡,1𝑡 + 𝜑2.12𝛾1𝑡,2𝑡 + ⋯

+ 𝜑2.1𝑛𝛾1𝑡,𝑛𝑡 + ⋯ + 𝜑𝑝.11𝛾1𝑡,1𝑡(𝑝−2) + 𝜑𝑝.12𝛾1𝑡,2𝑡(𝑝−2) + ⋯

+ 𝜑𝑝.1𝑛𝛾1𝑡,𝑛𝑡(𝑝−2)                                                                                                 (15) 

 

𝐸(𝑌1𝑡−2𝜖1𝑡) = 0 (uncorrelated processes) 

 

𝛾1𝑡,1𝑡(2) = ∑ ∑ 𝜑𝑘.1𝑗𝛾1𝑡(2),𝑗𝑡(𝑘) 

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                            (16) 

 

Dividing Equation (16) by 𝛾1𝑡,1𝑡 produces the autocorrelation   
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𝜌1𝑡,1𝑡(2) =
∑ ∑ 𝜑𝑘.1𝑗𝛾1𝑡(2),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

𝛾1𝑡,1𝑡

                                                                                   (17) 

 

𝜌1𝑡,1𝑡(2) is the autocorrelation of 𝑌1𝑡 𝑎𝑛𝑑 𝑌1𝑡(2) 

 

iii. Multiplying Equation (2) by 𝑌1𝑡−𝑝 and taking the expectations, 

 

𝐸(𝑌1𝑡𝑌1𝑡−𝑝)

= 𝜑1.11𝐸(𝑌1𝑡−𝑝𝑌1𝑡−1) + 𝜑1.12𝐸(𝑌1𝑡−𝑝𝑌2𝑡−1) + ⋯ + 𝜑1.1𝑛𝐸(𝑌1𝑡−𝑝𝑌𝑛𝑡−1

+ 𝜑2.11𝐸(𝑌1𝑡−𝑝𝑌1𝑡−2) + 𝜑2.12𝐸(𝑌1𝑡−𝑝𝑌2𝑡−2) + ⋯ + 𝜑2.1𝑛𝐸(𝑌1𝑡−𝑝𝑌𝑛𝑡−2) + ⋯

+ 𝜑𝑝.11𝐸(𝑌1𝑡−𝑝𝑌1𝑡−𝑝) + 𝜑𝑝.12𝐸(𝑌1𝑡−𝑝𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.1𝑛𝐸(𝑌1𝑡−𝑝𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌1𝑡−𝑝𝜖1𝑡)                                                                                                        (18) 

 

𝐸(𝑌1𝑡𝑌1𝑡−𝑝) = 𝛾1𝑡,1𝑡(𝑝) (autocovariance of 𝑌1𝑡 𝑎𝑡 𝑘 = 𝑝)  

 

𝛾1𝑡,1𝑡(𝑝) = 𝜑1.11𝛾1𝑡,1𝑡(𝑝−1) + 𝜑1.12𝛾2𝑡,1𝑡(𝑝−1) + ⋯ + 𝜑1.1𝑛𝛾𝑛𝑡,1𝑡(𝑝−1) + 𝜑2.11𝛾1𝑡,1𝑡(𝑝−2)

+ 𝜑2.12𝛾2𝑡,1𝑡(𝑝−2) + ⋯ + 𝜑2.1𝑛𝛾𝑛𝑡,1𝑡(𝑝−2) + ⋯ + 𝜑𝑝.11𝛾1𝑡,1𝑡 + 𝜑𝑝.12𝛾1𝑡,2𝑡

+ ⋯ + 𝜑𝑝.1𝑛𝛾1𝑡,𝑛𝑡                                                                                             (19) 

 

𝐸(𝑌1𝑡−𝑝𝜖1𝑡) = 0 (uncorrelated processes) 

 

𝛾1𝑡,1𝑡(𝑝)

= ∑ ∑ 𝜑𝑘.1𝑗𝛾1𝑡(𝑝),𝑗𝑡(𝑘) 

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                            (20) 

 

 

Dividing Equation (20) by 𝛾1𝑡,1𝑡 produces the autocorrelation   

 

𝜌1𝑡,1𝑡(𝑝) =
∑ ∑ 𝜑𝑘.1𝑗𝛾1𝑡(𝑝),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

𝛾1𝑡,1𝑡

                                                                                   (21) 

 

𝜌1𝑡,1𝑡(𝑝) is the autocorrelation of 𝑌1𝑡 𝑎𝑛𝑑 𝑌1𝑡(𝑝) 
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Generally, 

 

𝜌1𝑡,1𝑡(𝑙) = {

1                                              , 𝑙 = 0                    
∑ ∑ 𝜑𝑘.1𝑗𝛾1𝑡(𝑙),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

𝛾1𝑡,1𝑡

, 𝑙 = ±1, ±2, ± ⋯
                                               (22) 

 

Variance, Autocovariances and Autocorrelations of 𝒀𝟐𝒕 

 

Variance of 𝒀𝟐𝒕   

Multiplying Equation (3) by 𝑌2𝑡 and taking the expectations, 

 

𝐸(𝑌2𝑡
2 ) = 𝜑1.21𝐸(𝑌2𝑡𝑌1𝑡−1) + 𝜑1.22𝐸(𝑌2𝑡𝑌2𝑡−1) + ⋯ + 𝜑1.2𝑛𝐸(𝑌2𝑡𝑌𝑛𝑡−1)

+ 𝜑2.21𝐸(𝑌2𝑡𝑌1𝑡−2) + 𝜑2.22𝐸(𝑌2𝑡𝑌2𝑡−2) + ⋯ + 𝜑2.2𝑛𝐸(𝑌2𝑡𝑌𝑛𝑡−2) + ⋯
+ 𝜑𝑝.21𝐸(𝑌2𝑡𝑌1𝑡−𝑝) + 𝜑𝑝.22𝐸(𝑌2𝑡𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.2𝑛𝐸(𝑌2𝑡𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌2𝑡𝜖2𝑡)                          (23) 

 

𝐸(𝑌1𝑡
2 ) = 𝛾2𝑡,2𝑡 (Variance of 𝑌2𝑡) 

 

𝛾2𝑡,2𝑡 = 𝜑1.21𝛾2𝑡,1𝑡(1) + 𝜑1.22𝛾2𝑡,2𝑡(1) + ⋯ + 𝜑1.2𝑛𝛾2𝑡,𝑛𝑡(1) + 𝜑2.21𝛾2𝑡,1𝑡(2)

+ 𝜑2.22𝛾2𝑡,2𝑡(2) + ⋯ + 𝜑2.2𝑛𝛾2𝑡,𝑛𝑡(2) + ⋯ + 𝜑𝑝.21𝛾2𝑡,1𝑡(𝑝) + 𝜑𝑝.22𝛾2𝑡,2𝑡(𝑝)

+ ⋯ + 𝜑𝑝.2𝑛𝛾2𝑡,𝑛𝑡(𝑝)

+ 𝜎𝜖2𝑡
2                                                                                           (24) 

 

Equation (24) further reduces to 

 

𝛾2𝑡,2𝑡

= ∑ ∑ 𝜑𝑘.2𝑗𝛾2𝑡,𝑗𝑡(𝑘)

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                                       (25) 

 

From Equation (25), 𝛾2𝑡,2𝑡(𝑘=1,…,𝑝) are autocovariances of 𝑌2𝑡, 𝛾2𝑡,1𝑡𝑘=1,…,𝑝1),…, 

𝛾2𝑡,𝑛𝑡(𝑘=1,…,𝑝) are cross-autocovariances of 𝑌2𝑡 and 𝑌1𝑡,…, 𝑌2𝑡 and 𝑌𝑛𝑡, 𝜑𝑘.2𝑗 is the 

parameter of 𝑗𝑡ℎ predictive variable to 𝑌2𝑡 at 𝑘𝑡ℎ lag  and 𝐸(𝑌2𝑡𝜖2𝑡) = 𝜎𝜖2𝑡
2 (correlated 

stationary processes at zero time lag), which represent variance of the error term of 𝑌2𝑡. 

 

Autocovariance and Autocorrelation of 𝒀𝟐𝒕 
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i. Multiplying Equation (3) by 𝑌2𝑡−1 and taking the expectations, 

 

𝐸(𝑌2𝑡𝑌2𝑡−1)
= 𝜑1.21𝐸(𝑌2𝑡−1𝑌1𝑡−1) + 𝜑1.22𝐸(𝑌2𝑡−1𝑌2𝑡−1) + ⋯ + 𝜑1.2𝑛𝐸(𝑌2𝑡−1𝑌𝑛𝑡−1

+ 𝜑2.21𝐸(𝑌2𝑡−1𝑌1𝑡−2) + 𝜑2.22𝐸(𝑌2𝑡−1𝑌2𝑡−2) + ⋯ + 𝜑2.2𝑛𝐸(𝑌2𝑡−1𝑌𝑛𝑡−2) + ⋯
+ 𝜑𝑝.21𝐸(𝑌2𝑡−1𝑌1𝑡−𝑝) + 𝜑𝑝.22𝐸(𝑌2𝑡−1𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.2𝑛𝐸(𝑌2𝑡−1𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌2𝑡−1𝜖2𝑡)                                                                                                           (26) 

 

𝐸(𝑌2𝑡𝑌2𝑡−1) = 𝛾2𝑡,2𝑡(1) (autocovariance of 𝑌2𝑡  𝑎𝑡 𝑘 = 1) 

 

𝛾2𝑡,2𝑡(1)

= 𝜑1.21𝛾2𝑡,1𝑡 + 𝜑1.22𝛾2𝑡,2𝑡 + ⋯ + 𝜑1.2𝑛𝛾2𝑡,𝑛𝑡 + 𝜑2.21𝛾2𝑡,1𝑡(1) + 𝜑2.22𝛾2𝑡,2𝑡(1) + ⋯

+ 𝜑2.2𝑛𝛾2𝑡,𝑛𝑡(1) + ⋯ + 𝜑𝑝.21𝛾2𝑡,1𝑡(𝑝−1) + 𝜑𝑝.22𝛾2𝑡,2𝑡(𝑝−1) + ⋯

+ 𝜑𝑝.2𝑛𝛾2𝑡,𝑛𝑡(𝑝−1)                                                                                                 (27) 

 

𝐸(𝑌2𝑡−1𝜖2𝑡) = 0 (uncorrelated processes) 

𝛾2𝑡,2𝑡(1)

= ∑ ∑ 𝜑𝑘.2𝑗𝛾2𝑡(1),𝑗𝑡(𝑘) 

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                            (28) 

 

Dividing Equation (28) by 𝛾2𝑡,2𝑡 produces the autocorrelation   

 

𝜌2𝑡,2𝑡(1) =
∑ ∑ 𝜑𝑘.2𝑗𝛾2𝑡(1),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

𝛾2𝑡,2𝑡

                                                                                     (29) 

 

𝜌2𝑡,2𝑡(1) is the autocorrelation of 𝑌2𝑡 𝑎𝑛𝑑 𝑌2𝑡(1) 

 

ii. Multiplying Equation (3) by 𝑌2𝑡−2 and taking the expectations, 

 

𝐸(𝑌2𝑡𝑌2𝑡−2)
= 𝜑1.21𝐸(𝑌2𝑡−2𝑌1𝑡−1) + 𝜑1.22𝐸(𝑌2𝑡−2𝑌2𝑡−1) + ⋯ + 𝜑1.2𝑛𝐸(𝑌2𝑡−2𝑌𝑛𝑡−1

+ 𝜑2.21𝐸(𝑌2𝑡−2𝑌1𝑡−2) + 𝜑2.22𝐸(𝑌2𝑡−2𝑌2𝑡−2) + ⋯ + 𝜑2.2𝑛𝐸(𝑌2𝑡−2𝑌𝑛𝑡−2) + ⋯
+ 𝜑𝑝.21𝐸(𝑌2𝑡−2𝑌1𝑡−𝑝) + 𝜑𝑝.22𝐸(𝑌2𝑡−2𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.2𝑛𝐸(𝑌2𝑡−2𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌2𝑡−2𝜖2𝑡)                                                                                                        (30) 
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𝐸(𝑌2𝑡𝑌2𝑡−2) = 𝛾2𝑡,2𝑡(2) (autocovariance of 𝑌2𝑡  𝑎𝑡 𝑘 = 2) 

 

𝛾2𝑡,2𝑡(2)

= 𝜑1.21𝛾2𝑡,2𝑡(1) + 𝜑1.22𝛾2𝑡,2𝑡(1) + ⋯ + 𝜑1.2𝑛𝛾𝑛𝑡,2𝑡(1) + 𝜑2.21𝛾1𝑡,2𝑡 + 𝜑2.22𝛾2𝑡,2𝑡 + ⋯

+ 𝜑2.2𝑛𝛾2𝑡,𝑛𝑡 + ⋯ + 𝜑𝑝.21𝛾2𝑡,1𝑡(𝑝−2) + 𝜑𝑝.22𝛾2𝑡,2𝑡(𝑝−2) + ⋯

+ 𝜑𝑝.2𝑛𝛾2𝑡,𝑛𝑡(𝑝−2)                                                                                                   (31) 

 

𝐸(𝑌2𝑡−2𝜖2𝑡) = 0 (uncorrelated processes) 

 

𝛾2𝑡,2𝑡(2)

= ∑ ∑ 𝜑𝑘.2𝑗𝛾2𝑡(2),𝑗𝑡(𝑘) 

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                               (32) 

 

Dividing Equation (32) by 𝛾2𝑡,2𝑡 produces the autocorrelation   

 

𝜌2𝑡,2𝑡(2)

=
∑ ∑ 𝜑𝑘.2𝑗𝛾2𝑡(2),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

𝛾2𝑡,2𝑡

                                                                                        (33) 

 

𝜌2𝑡,2𝑡(2) is the autocorrelation of 𝑌2𝑡 𝑎𝑛𝑑 𝑌2𝑡(2) 

 

iii. Multiplying Equation (3) by 𝑌2𝑡−𝑝 and taking the expectations, 

𝐸(𝑌2𝑡𝑌2𝑡−𝑝)

= 𝜑1.21𝐸(𝑌2𝑡−𝑝𝑌1𝑡−1) + 𝜑1.22𝐸(𝑌2𝑡−𝑝𝑌2𝑡−1) + ⋯ + 𝜑1.2𝑛𝐸(𝑌2𝑡−𝑝𝑌𝑛𝑡−1

+ 𝜑2.21𝐸(𝑌2𝑡−𝑝𝑌1𝑡−2) + 𝜑2.22𝐸(𝑌2𝑡−𝑝𝑌2𝑡−2) + ⋯ + 𝜑2.2𝑛𝐸(𝑌2𝑡−𝑝𝑌𝑛𝑡−2) + ⋯

+ 𝜑𝑝.21𝐸(𝑌2𝑡−𝑝𝑌1𝑡−𝑝) + 𝜑𝑝.22𝐸(𝑌2𝑡−𝑝𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.2𝑛𝐸(𝑌2𝑡−𝑝𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌2𝑡−𝑝𝜖2𝑡)                                                                                                        (34) 

 

𝐸(𝑌2𝑡𝑌2𝑡−𝑝) = 𝛾2𝑡,2𝑡(𝑝) (autocovariance of 𝑌2𝑡  𝑎𝑡 𝑘 = 𝑝)  
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𝛾2𝑡,2𝑡(𝑝) = 𝜑1.21𝛾1𝑡,2𝑡(𝑝−1) + 𝜑1.22𝛾2𝑡,2𝑡(𝑝−1) + ⋯ + 𝜑1.2𝑛𝛾𝑛𝑡,2𝑡(𝑝−1) + 𝜑2.21𝛾1𝑡,2𝑡(𝑝−2)

+ 𝜑2.22𝛾2𝑡,2𝑡(𝑝−2) + ⋯ + 𝜑2.2𝑛𝛾𝑛𝑡,2𝑡(𝑝−2) + ⋯ + 𝜑𝑝.21𝛾1𝑡,2𝑡 + 𝜑𝑝.22𝛾2𝑡,2𝑡

+ ⋯ + 𝜑𝑝.2𝑛𝛾2𝑡,𝑛𝑡                                                                                             (35) 

 

𝐸(𝑌2𝑡−𝑝𝜖2𝑡) = 0 (uncorrelated processes) 

 

𝛾2𝑡,2𝑡(𝑝)

= ∑ ∑ 𝜑𝑘.2𝑗𝛾2𝑡(𝑝),𝑗𝑡(𝑘) 

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                            (36) 

 

Dividing Equation (36) by 𝛾1𝑡,1𝑡 produces the autocorrelation   

 

𝜌2𝑡,2𝑡(𝑝) =
∑ ∑ 𝜑𝑘.2𝑗𝛾2𝑡(𝑝),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

𝛾2𝑡,2𝑡

                                                                                   (37) 

 

𝜌2𝑡,2𝑡(𝑝) is the autocorrelation of 𝑌2𝑡 𝑎𝑛𝑑 𝑌2𝑡(𝑝) 

 

Therefore, 

𝜌2𝑡,2𝑡(𝑙) = {

1                                              , 𝑙 = 0              
∑ ∑ 𝜑𝑘.2𝑗𝛾2𝑡(𝑙),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

𝛾2𝑡,2𝑡

, 𝑙 = ±1,2, ±, …
                                                (38) 

Generally, 

 

𝜌𝑖𝑡,𝑖𝑡(𝑙) = {

1                                                     , 𝑙 = 0                    
∑ ∑ ∑ 𝜑𝑘.𝑖𝑗𝛾𝑖𝑡(𝑙),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑚
𝑖=1

𝑝
𝑘=1

𝛾𝑖𝑡,𝑖𝑡

, 𝑙 = ±1, ±2, ± ⋯
                                          (39) 

 

Cross-Autocovariance and Cross-Autocorrelations  

The Cross-autocovariance is the covariance between 𝑌𝑖𝑡 𝑎𝑛𝑑 𝑌𝑗𝑡(𝑘). 

The approach of obtaining the cross-autocorrelations is not different from the earlier 

section, except the cross-autocovariances and cross-autocorrelations involve two distinct 

time variables 𝑌𝑖𝑡 𝑎𝑛𝑑 𝑌𝑗𝑡, 

 

Multiplying Equation (2) by 𝑌2𝑡−1  and taking the expectations, we have 
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𝐸(𝑌1𝑡𝑌2𝑡−1) = 𝜑1.11𝐸(𝑌2𝑡−1𝑌1𝑡−1) + 𝜑1.12𝐸(𝑌2𝑡−1𝑌2𝑡−1) + ⋯ + 𝜑1.1𝑛𝐸(𝑌2𝑡−1𝑌𝑛𝑡−1)
+ 𝜑2.11𝐸(𝑌2𝑡−1𝑌1𝑡−2) + 𝜑2.12𝐸(𝑌2𝑡−1𝑌2𝑡−2) + ⋯ + 𝜑2.1𝑛𝐸(𝑌2𝑡−1𝑌𝑛𝑡−2)
+ ⋯ + 𝜑𝑝.11𝐸(𝑌2𝑡−1𝑌1𝑡−𝑝) + 𝜑𝑝.12𝐸(𝑌2𝑡−1𝑌2𝑡−𝑝) + ⋯

+ 𝜑𝑝.1𝑛𝐸(𝑌2𝑡−1𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌2𝑡−1𝜖1𝑡)                                                                                                       (40) 

 

𝐸(𝑌1𝑡𝑌2𝑡−1) = 𝛾1𝑡,2𝑡(1) (Cross-covariance of 𝑌1𝑡 𝑎𝑛𝑑 𝑌2𝑡(1)) 

 

𝛾1𝑡,2𝑡(1)

= 𝜑1.11𝛾2𝑡,1𝑡 + 𝜑1.12𝛾2𝑡,2𝑡 + ⋯ + 𝜑1.1𝑛𝛾2𝑡,𝑛𝑡 + 𝜑2.11𝛾2𝑡,1𝑡(1) + 𝜑2.12𝛾2𝑡,2𝑡(1) + ⋯

+ 𝜑2.1𝑛𝛾2𝑡,𝑛𝑡(1) + ⋯ + 𝜑𝑝.11𝛾2𝑡,1𝑡(𝑝−1) + 𝜑𝑝.12𝛾2𝑡,2𝑡(𝑝−1) + ⋯

+ 𝜑𝑝.1𝑛𝛾2𝑡,𝑛𝑡(𝑝−1)                                                                                                  (41) 

 

𝐸(𝑌2𝑡−1𝜖1𝑡) = 0(uncorrelated stationary processes at zero time lag) 

 

𝛾1𝑡,2𝑡(1)

= ∑ ∑ 𝜑𝑘.1𝑗𝛾2𝑡(1),𝑗𝑡(𝑘) 

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                                  (42) 

 

Dividing Equation (42) by √𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡 produces the autocorrelation   

 

𝜌1𝑡,2𝑡(1)

=
∑ ∑ 𝜑𝑘.1𝑗𝛾2𝑡(1),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

                                                                                          (43) 

 

𝜌1𝑡,2𝑡(1) is the cross-autocorrelation of 𝑌1𝑡 𝑎𝑛𝑑 𝑌2𝑡(1) 

 

Also, Multiplying Equation (2) by 𝑌2𝑡−2  and taking the expectations, we have 
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𝐸(𝑌1𝑡𝑌2𝑡−2)
= 𝜑1.11𝐸(𝑌2𝑡−2𝑌1𝑡−1) + 𝜑1.12𝐸(𝑌2𝑡−2𝑌2𝑡−1) + ⋯ + 𝜑1.1𝑛𝐸(𝑌2𝑡−2𝑌𝑛𝑡−1)
+ 𝜑2.11𝐸(𝑌2𝑡−2𝑌1𝑡−2) + 𝜑2.12𝐸(𝑌2𝑡−2𝑌2𝑡−2) + ⋯ + 𝜑2.1𝑛𝐸(𝑌2𝑡−2𝑌𝑛𝑡−2) + ⋯
+ 𝜑𝑝.11𝐸(𝑌2𝑡−2𝑌1𝑡−𝑝) + 𝜑𝑝.12𝐸(𝑌2𝑡−2𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.1𝑛𝐸(𝑌2𝑡−2𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌2𝑡−2𝜖1𝑡)                                                                                                            (44) 

 

𝐸(𝑌1𝑡𝑌2𝑡−2) = 𝛾1𝑡,2𝑡(2) (Cross-covariance of 𝑌1𝑡 𝑎𝑛𝑑 𝑌2𝑡(2)) 

 

𝛾1𝑡,2𝑡(2)

= 𝜑1.11𝛾1𝑡,2𝑡(1) + 𝜑1.12𝛾2𝑡,2𝑡(1) + ⋯ + 𝜑1.1𝑛𝛾2𝑡(1),𝑛𝑡 + 𝜑2.11𝛾2𝑡,1𝑡 + 𝜑2.12𝛾2𝑡,2𝑡 + ⋯

+ 𝜑2.1𝑛𝛾2𝑡,𝑛𝑡 + ⋯ + 𝜑𝑝.11𝛾2𝑡,1𝑡(𝑝−2) + 𝜑𝑝.12𝛾2𝑡,2𝑡(𝑝−2) + ⋯

+ 𝜑𝑝.1𝑛𝛾2𝑡,𝑛𝑡(𝑝−2)                                                                                                     (45) 

 

𝐸(𝑌2𝑡−2𝜖1𝑡) = 0(uncorrelated stationary processes at zero time lag) 

 

𝛾1𝑡,2𝑡(2)

= ∑ ∑ 𝜑𝑘.1𝑗𝛾2𝑡(2),𝑗𝑡(𝑘) 

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                                 (46) 

 

Dividing Equation (46) by √𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡 produces the autocorrelation   

 

𝜌1𝑡,2𝑡(2)

=
∑ ∑ 𝜑𝑘.1𝑗𝛾2𝑡(2),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

                                                                                          (47) 

 

𝜌1𝑡,2𝑡(2) is the cross-autocorrelation of 𝑌1𝑡 𝑎𝑛𝑑 𝑌2𝑡(2) 

 

Multiplying Equation (2) by 𝑌2𝑡−𝑝  and taking the expectations, 

 

𝜌1𝑡,2𝑡(𝑝)

=
∑ ∑ 𝜑𝑘.1𝑗𝛾2𝑡(𝑝),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

                                                                                          (48) 

Therefore, 
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𝜌1𝑡,2𝑡(𝑙) =
∑ ∑ 𝜑𝑘.1𝑗𝛾2𝑡(𝑙),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

, 𝑙

= 0, ±1, ±2, ±, …                                                     (49) 

 

Multiplying Equation (3) by 𝑌1𝑡−1  and taking the expectations, 

 

𝐸(𝑌2𝑡𝑌1𝑡−1)
= 𝜑1.21𝐸(𝑌1𝑡−1𝑌1𝑡−1) + 𝜑1.22𝐸(𝑌1𝑡−1𝑌2𝑡−1) + ⋯ + 𝜑1.2𝑛𝐸(𝑌1𝑡−1𝑌𝑛𝑡−1)
+ 𝜑2.21𝐸(𝑌1𝑡−1𝑌1𝑡−2) + 𝜑2.22𝐸(𝑌1𝑡−1𝑌2𝑡−2) + ⋯ + 𝜑2.2𝑛𝐸(𝑌1𝑡−1𝑌𝑛𝑡−2) + ⋯
+ 𝜑𝑝.21𝐸(𝑌1𝑡−1𝑌1𝑡−𝑝) + 𝜑𝑝.22𝐸(𝑌1𝑡−1𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.2𝑛𝐸(𝑌1𝑡−1𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌1𝑡−1𝜖2𝑡)                                                                                                          (50) 

 

𝐸(𝑌2𝑡𝑌1𝑡−1) = 𝛾2𝑡,1𝑡(1) (Cross-covariance of 𝑌2𝑡  𝑎𝑛𝑑 𝑌1𝑡(1)) 

 

𝛾2𝑡,1𝑡(1)

= 𝜑1.21𝛾1𝑡,1𝑡 + 𝜑1.22𝛾1𝑡,2𝑡 + ⋯ + 𝜑1.2𝑛𝛾1𝑡,𝑛𝑡 + 𝜑2.21𝛾1𝑡,2𝑡(1) + 𝜑2.22𝛾1𝑡,2𝑡(1) + ⋯

+ 𝜑2.2𝑛𝛾1𝑡,𝑛𝑡(1) + ⋯ + 𝜑𝑝.21𝛾1𝑡,1𝑡(𝑝−1) + 𝜑𝑝.22𝛾1𝑡,2𝑡(𝑝−1) + ⋯

+ 𝜑𝑝.2𝑛𝛾1𝑡,𝑛𝑡(𝑝−1)                                                                                                  (51) 

 

𝐸(𝑌1𝑡−1𝜖2𝑡) = 0(uncorrelated stationary processes at zero time lag) 

 

𝛾2𝑡,1𝑡(1)

= ∑ ∑ 𝜑𝑘.2𝑗𝛾1𝑡(1),𝑗𝑡(𝑘) 

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                                  (52) 

 

Dividing Equation (52) by √𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡 produces the autocorrelation   

 

𝜌2𝑡,1𝑡(1)

=
∑ ∑ 𝜑𝑘.2𝑗𝛾1𝑡(1),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

                                                                                          (53) 

 

𝜌2𝑡,1𝑡(1) is the cross-autocorrelation of 𝑌2𝑡 𝑎𝑛𝑑 𝑌1𝑡(1) 
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Also, multiplying Equation (3) by 𝑌1𝑡−2  and taking the expectations, 

 

𝐸(𝑌2𝑡𝑌1𝑡−2)
= 𝜑1.21𝐸(𝑌1𝑡−2𝑌1𝑡−1) + 𝜑1.22𝐸(𝑌1𝑡−2𝑌2𝑡−1) + ⋯ + 𝜑1.2𝑛𝐸(𝑌1𝑡−2𝑌𝑛𝑡−1)
+ 𝜑2.21𝐸(𝑌1𝑡−2𝑌1𝑡−2) + 𝜑2.22𝐸(𝑌1𝑡−2𝑌2𝑡−2) + ⋯ + 𝜑2.2𝑛𝐸(𝑌1𝑡−2𝑌𝑛𝑡−2) + ⋯
+ 𝜑𝑝.21𝐸(𝑌1𝑡−2𝑌1𝑡−𝑝) + 𝜑𝑝.22𝐸(𝑌1𝑡−2𝑌2𝑡−𝑝) + ⋯ + 𝜑𝑝.2𝑛𝐸(𝑌1𝑡−2𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌1𝑡−2𝜖2𝑡)                                                                                                           (54) 

 

𝐸(𝑌2𝑡𝑌1𝑡−2) = 𝛾2𝑡,1𝑡(2) (Cross-covariance of 𝑌2𝑡  𝑎𝑛𝑑 𝑌1𝑡(2)) 

 

𝛾2𝑡,1𝑡(2)

= 𝜑1.21𝛾1𝑡,1𝑡(1) + 𝜑1.22𝛾2𝑡,1𝑡(1) + ⋯ + 𝜑1.2𝑛𝛾𝑛𝑡,1𝑡(1) + 𝜑2.21𝛾1𝑡,1𝑡 + 𝜑2.22𝛾1𝑡,2𝑡 + ⋯

+ 𝜑2.2𝑛𝛾1𝑡,𝑛𝑡 + ⋯ + 𝜑𝑝.21𝛾1𝑡,1𝑡(𝑝−2) + 𝜑𝑝.22𝛾1𝑡,2𝑡(𝑝−2) + ⋯

+ 𝜑𝑝.2𝑛𝛾1𝑡,𝑛𝑡(𝑝−2)                                                                                                  (55) 

 

𝐸(𝑌1𝑡−2𝜖2𝑡) = 0(uncorrelated stationary processes at zero time lag) 

 

𝛾2𝑡,1𝑡(2)

= ∑ ∑ 𝜑𝑘.2𝑗𝛾1𝑡(2),𝑗𝑡(𝑘) 

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                              (56) 

 

Dividing Equation (56) by √𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡 produces the autocorrelation   

 

𝜌2𝑡,1𝑡(2)

=
∑ ∑ 𝜑𝑘.2𝑗𝛾1𝑡(2),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

                                                                                          (57) 

 

𝜌2𝑡,1𝑡(2) is the cross-autocorrelation of 𝑌2𝑡 𝑎𝑛𝑑 𝑌1𝑡(2) 

 

Multiplying Equation (3) by 𝑌1𝑡−𝑝  and taking the expectations, 

 



Abacus (Mathematics Science Series) Vol. 49, No 2, July. 2022 

 

304 
 

𝜌2𝑡,1𝑡(𝑝)

=
∑ ∑ 𝜑𝑘.2𝑗𝛾1𝑡(𝑝),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

                                                                                          (58) 

Therefore, 

 

𝜌2𝑡,1𝑡(𝑙) =
∑ ∑ 𝜑𝑘.2𝑗𝛾1𝑡(𝑙),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

, 𝑙

= 0, ±1, ±2, ±, …                                                      (59) 

 

 

Multiplying Equation (4) by 𝑌1𝑡−1  and taking the expectations, we have 

 

𝐸(𝑌𝑚𝑡𝑌1𝑡−1) = 𝜑1.𝑚1𝐸(𝑌1𝑡−1𝑌1𝑡−1) + 𝜑1.𝑚2𝐸(𝑌1𝑡−1𝑌2𝑡−1) + ⋯ + 𝜑1.𝑚𝑛𝐸(𝑌1𝑡−1𝑌𝑛𝑡−1)
+ 𝜑2.𝑚1𝐸(𝑌1𝑡−1𝑌1𝑡−2) + 𝜑2.𝑚2𝐸(𝑌1𝑡−1𝑌2𝑡−2) + ⋯ + 𝜑2.𝑚𝑛𝐸(𝑌1𝑡−1𝑌𝑛𝑡−2)
+ ⋯ + 𝜑𝑝.𝑚1𝐸(𝑌1𝑡−1𝑌1𝑡−𝑝) + 𝜑𝑝.𝑚2𝐸(𝑌1𝑡−1𝑌2𝑡−𝑝) + ⋯

+ 𝜑𝑝.𝑚𝑛𝐸(𝑌1𝑡−1𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌1𝑡−1𝜖𝑚𝑡)                                                                                                      (60) 

 

𝐸(𝑌𝑚𝑡𝑌1𝑡−1) = 𝛾𝑚𝑡,1𝑡(1) (Cross-covariance of 𝑌𝑚𝑡 𝑎𝑛𝑑 𝑌1𝑡(1)) 

 

𝛾𝑚𝑡,1𝑡(1) = 𝜑1.𝑚1𝛾1𝑡,1𝑡 + 𝜑1.𝑚2𝛾1𝑡,2𝑡 + ⋯ + 𝜑1.𝑚𝑛𝛾1𝑡,𝑛𝑡 + 𝜑2.𝑚1𝛾1𝑡,1𝑡(1) + 𝜑2.𝑚2𝛾1𝑡,2𝑡(1)

+ ⋯ + 𝜑2.𝑚𝑛𝛾1𝑡,𝑛𝑡(1) + ⋯ + 𝜑𝑝.𝑚1𝛾1𝑡,1𝑡(𝑝−1) + 𝜑𝑝.𝑚2𝛾1𝑡,2𝑡(𝑝−1) + ⋯

+ 𝜑𝑝.𝑚𝑛𝛾1𝑡,𝑛𝑡(𝑝−1)                                                                                             (61) 

 

𝐸(𝑌1𝑡−1𝜖𝑚𝑡) = 0(uncorrelated stationary processes at zero time lag) 

 

Equation (61) further reduces to 

 

𝛾𝑚𝑡,1𝑡(1)

= ∑ ∑ 𝜑𝑘.𝑚𝑗𝛾1𝑡(1),𝑗𝑡(𝑘)

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                               (62) 

 

Dividing Equation (64) by √𝛾1𝑡,1𝑡𝛾𝑚𝑡,𝑚𝑡, it produces cross-autocorrelation presented as 
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𝜌𝑚𝑡,1𝑡(1)

=
∑ ∑ 𝜑𝑘.𝑚𝑗𝛾1𝑡(1),𝑗𝑡(𝑘)

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾𝑚𝑡,𝑚𝑡

                                                                                         (63) 

 

Multiplying Equation (4) by 𝑌1𝑡−2  and taking the expectations, we have 

 

𝐸(𝑌𝑚𝑡𝑌1𝑡−2) = 𝜑1.𝑚1𝐸(𝑌1𝑡−2𝑌1𝑡−1) + 𝜑1.𝑚2𝐸(𝑌1𝑡−2𝑌2𝑡−1) + ⋯ + 𝜑1.𝑚𝑛𝐸(𝑌1𝑡−2𝑌𝑛𝑡−1)
+ 𝜑2.𝑚1𝐸(𝑌1𝑡−2𝑌1𝑡−2) + 𝜑2.𝑚2𝐸(𝑌1𝑡−2𝑌2𝑡−2) + ⋯ + 𝜑2.𝑚𝑛𝐸(𝑌1𝑡−2𝑌𝑛𝑡−2)
+ ⋯ + 𝜑𝑝.𝑚1𝐸(𝑌1𝑡−2𝑌1𝑡−𝑝) + 𝜑𝑝.𝑚2𝐸(𝑌1𝑡−2𝑌2𝑡−𝑝) + ⋯

+ 𝜑𝑝.𝑚𝑛𝐸(𝑌1𝑡−2𝑌𝑛𝑡−𝑝)

+ 𝐸(𝑌1𝑡−2𝜖𝑚𝑡)                                                                                                      (64) 

 

𝐸(𝑌𝑚𝑡𝑌1𝑡−2) = 𝛾𝑚𝑡,1𝑡(2) (Cross-covariance of 𝑌𝑚𝑡 𝑎𝑛𝑑 𝑌1𝑡(2)) 

 

𝛾𝑚𝑡,1𝑡(2)

= 𝜑1.𝑚1𝛾1𝑡,1𝑡(1) + 𝜑1.𝑚2𝛾2𝑡,1𝑡(1) + ⋯ + 𝜑1.𝑚𝑛𝛾𝑛𝑡,1𝑡(1) + 𝜑2.𝑚1𝛾1𝑡,1𝑡 + 𝜑2.𝑚2𝛾1𝑡,2𝑡 + ⋯

+ 𝜑2.𝑚𝑛𝛾1𝑡,𝑛𝑡 + ⋯ + 𝜑𝑝.𝑚1𝛾1𝑡,1𝑡(𝑝−2) + 𝜑𝑝.𝑚2𝛾1𝑡,2𝑡(𝑝−2) + ⋯

+ 𝜑𝑝.𝑚𝑛𝛾1𝑡,𝑛𝑡(𝑝−2)                                                                                                (65) 

 

𝐸(𝑌1𝑡−2𝜖𝑚𝑡) = 0(uncorrelated stationary processes at zero time lag) 

 

Equation (65) further reduces to 

 

𝛾𝑚𝑡,1𝑡(2)

= ∑ ∑ 𝜑𝑘.𝑚𝑗𝛾1𝑡(2),𝑗𝑡(𝑘)

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                               (66) 

 

Dividing Equation (66) by √𝛾1𝑡,1𝑡𝛾𝑚𝑡,𝑚𝑡, it produces cross-autocorrelation presented as 

 

𝜌𝑚𝑡,1𝑡(2)

=
∑ ∑ 𝜑𝑘.𝑚𝑗𝛾1𝑡(2),𝑗𝑡(𝑘)

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾𝑚𝑡,𝑚𝑡

                                                                                         (67) 
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Multiplying Equation (4) by 𝑌1𝑡−𝑝  and taking the expectations, 

 

𝜌𝑚𝑡,1𝑡(𝑝)

=
∑ ∑ 𝜑𝑘.𝑚𝑗𝛾2𝑡(𝑝),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

                                                                                        (68) 

Therefore, 

 

𝜌𝑚𝑡,1𝑡(𝑙) =
∑ ∑ 𝜑𝑘.𝑚𝑗𝛾1𝑡(𝑙),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

, 𝑙

= 0, ±1, ±2, ±, …                                                    (79) 

 

Multiplying Equation (4) by 𝑌2𝑡−1  and taking the expectations, 

 

𝐸(𝑌𝑚𝑡𝑌2𝑡−1) = 𝜑1.𝑚1𝐸(𝑌2𝑡−1𝑌1𝑡−1) + 𝜑1.𝑚2𝐸(𝑌2𝑡−1𝑌2𝑡−1) + ⋯ + 𝜑1.𝑚𝑛𝐸(𝑌2𝑡−1𝑌𝑛𝑡−1)
+ 𝜑2.𝑚1𝐸(𝑌2𝑡−1𝑌1𝑡−2) + 𝜑2.𝑚2𝐸(𝑌2𝑡−1𝑌2𝑡−2) + ⋯ + 𝜑2.𝑚𝑛𝐸(𝑌2𝑡−1𝑌𝑛𝑡−2)
+ ⋯ + 𝜑𝑝.𝑚1𝐸(𝑌2𝑡−1𝑌1𝑡−𝑝) + 𝜑𝑝.𝑚2𝐸(𝑌2𝑡−1𝑌2𝑡−𝑝) + ⋯

+ 𝜑𝑝.𝑚𝑛𝐸(𝑌2𝑡−1𝑌𝑛𝑡−𝑝) + 𝐸(𝑌2𝑡−1𝜖𝑚𝑡)                                                           (70) 

 

𝐸(𝑌𝑚𝑡𝑌2𝑡−1) = 𝛾𝑚𝑡,2𝑡(1) (Cross-covariance of 𝑌𝑚𝑡 𝑎𝑛𝑑 𝑌2𝑡(1)) 

 

𝛾𝑚𝑡,2𝑡(1) = 𝜑1.𝑚1𝛾1𝑡,2𝑡 + 𝜑1.𝑚2𝛾2𝑡,2𝑡 + ⋯ + 𝜑1.𝑚𝑛𝛾2𝑡,𝑛𝑡 + 𝜑2.𝑚1𝛾2𝑡,1𝑡(1) + 𝜑2.𝑚2𝛾2𝑡,2𝑡(1)

+ ⋯ + 𝜑2.𝑚𝑛𝛾2𝑡,𝑛𝑡(1) + ⋯ + 𝜑𝑝.𝑚1𝛾2𝑡,1𝑡(𝑝−1) + 𝜑𝑝.𝑚2𝛾2𝑡,2𝑡(𝑝−1) + ⋯

+ 𝜑𝑝.𝑚𝑛𝛾2𝑡,𝑛𝑡(𝑝−1)                                                                                             (71) 

 

𝐸(𝑌2𝑡−1𝜖𝑚𝑡) = 0(uncorrelated stationary processes at zero time lag) 

 

Equation (71) further reduces to 

 

𝛾𝑚𝑡,2𝑡(1)

= ∑ ∑ 𝜑𝑘.𝑚𝑗𝛾2𝑡(1),𝑗𝑡(𝑘)

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                            (72) 

 

Dividing Equation (72) by √𝛾2𝑡,2𝑡𝛾𝑚𝑡,𝑚𝑡, it produces cross-autocorrelation presented as 
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𝜌𝑚𝑡,2𝑡(1)

=
∑ ∑ 𝜑𝑘.𝑚𝑗𝛾2𝑡(1),𝑗𝑡(𝑘)

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾2𝑡,2𝑡𝛾𝑚𝑡,𝑚𝑡

                                                                                         (73) 

 

Multiplying Equation (4) by 𝑌2𝑡−2  and taking the expectations, 

 

𝐸(𝑌𝑚𝑡𝑌2𝑡−2) = 𝜑1.𝑚1𝐸(𝑌2𝑡−2𝑌1𝑡−1) + 𝜑1.𝑚2𝐸(𝑌2𝑡−2𝑌2𝑡−1) + ⋯ + 𝜑1.𝑚𝑛𝐸(𝑌2𝑡−2𝑌𝑛𝑡−1)
+ 𝜑2.𝑚1𝐸(𝑌2𝑡−2𝑌1𝑡−2) + 𝜑2.𝑚2𝐸(𝑌2𝑡−2𝑌2𝑡−2) + ⋯ + 𝜑2.𝑚𝑛𝐸(𝑌2𝑡−2𝑌𝑛𝑡−2)
+ ⋯ + 𝜑𝑝.𝑚1𝐸(𝑌2𝑡−2𝑌1𝑡−𝑝) + 𝜑𝑝.𝑚2𝐸(𝑌2𝑡−2𝑌2𝑡−𝑝) + ⋯

+ 𝜑𝑝.𝑚𝑛𝐸(𝑌2𝑡−2𝑌𝑛𝑡−𝑝) + 𝐸(𝑌2𝑡−2𝜖𝑚𝑡)                                                        (74) 

 

𝐸(𝑌𝑚𝑡𝑌2𝑡−2) = 𝛾𝑚𝑡,2𝑡(2) (Cross-covariance of 𝑌𝑚𝑡 𝑎𝑛𝑑 𝑌2𝑡(2)) 

 

𝛾𝑚𝑡,2𝑡(2)

= 𝜑1.𝑚1𝛾1𝑡,2𝑡(1) + 𝜑1.𝑚2𝛾2𝑡,2𝑡(1) + ⋯ + 𝜑1.𝑚𝑛𝛾𝑛𝑡,2𝑡(1) + 𝜑2.𝑚1𝛾1𝑡,2𝑡 + 𝜑2.𝑚2𝛾2𝑡,2𝑡 + ⋯

+ 𝜑2.𝑚𝑛𝛾2𝑡,𝑛𝑡 + ⋯ + 𝜑𝑝.𝑚1𝛾2𝑡,1𝑡(𝑝−2) + 𝜑𝑝.𝑚2𝛾2𝑡,2𝑡(𝑝−2) + ⋯

+ 𝜑𝑝.𝑚𝑛𝛾2𝑡,𝑛𝑡(𝑝−2)                                                                                                   (75) 

 

𝐸(𝑌2𝑡−2𝜖𝑚𝑡) = 0(uncorrelated stationary processes at zero time lag) 

 

Equation (75) further reduces to 

 

𝛾𝑚𝑡,2𝑡(2)

= ∑ ∑ 𝜑𝑘.𝑚𝑗𝛾2𝑡(2),𝑗𝑡(𝑘)

𝑛

𝑗=1

𝑝

𝑘=1

                                                                                            (76) 

 

Dividing Equation (76) by √𝛾2𝑡,2𝑡𝛾𝑚𝑡,𝑚𝑡, it produces cross-autocorrelation presented as 

 

𝜌𝑚𝑡,2𝑡(2) =
∑ ∑ 𝜑𝑘.𝑚𝑗𝛾2𝑡(2),𝑗𝑡(𝑘)

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾2𝑡,2𝑡𝛾𝑚𝑡,𝑚𝑡

                                                                                    (77) 

 

Multiplying Equation (4) by 𝑌2𝑡−𝑝  and taking the expectations, 
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𝜌𝑚𝑡,2𝑡(𝑝) =
∑ ∑ 𝜑𝑘.𝑚𝑗𝛾2𝑡(𝑝),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾2𝑡,2𝑡𝛾𝑚𝑡,𝑚𝑡

                                                                                  (78) 

Therefore, 

 

𝜌𝑚𝑡,2𝑡(𝑙) =
∑ ∑ 𝜑𝑘.𝑚𝑗𝛾2𝑡(𝑙),𝑗𝑡(𝑘) 

𝑛
𝑗=1

𝑝
𝑘=1

√𝛾2𝑡,2𝑡𝛾𝑚𝑡,𝑚𝑡

, 𝑙

= 0, ±1, ±2, ±, …                                                (79) 

 

Generally, 

 

𝜌𝑖𝑡,𝑗𝑡(𝑘) =
∑ 𝜑𝑘.𝑖𝑗𝛾𝑖𝑡(𝑙),𝑗𝑡(𝑘) 

𝑝
𝑘=1

√𝛾𝑖𝑡,𝑖𝑡𝛾𝑗𝑡,𝑗𝑡

, 𝑘, 𝑙 = 0, ±1, ±2, ±, … (𝑘 ≠ 𝑙), (𝑖

≠ 𝑗)                            (80) 

 

Equation (80) is the general model for cross-autocorrelation at lag k. 

 

RESULTS: 

In this section, numerical estimates of the variances, auto-covariances, cross-

autocovariances, autocorrelations and cross-autocorrelations are presented. 

  

Preliminary Estimates  

Here, regression equations for  𝑌1𝑡 and 𝑌2𝑡 with estimated parameters for the first two lags 

of each response and predictive time variable are presented. The lag length is arbitrary 

chosen for the estimate of more than one parameter in each model. Therefore, 

  

𝑌𝑖𝑡 = ∑ ∑ 𝜑𝑘.𝑖𝑗𝑌𝑗𝑡−𝑘

2

𝑗=1

2

𝑘=1

+ 𝜖𝑖𝑡                                                                                                        (81) 

 

𝑓𝑜𝑟 𝑖 = 1; 𝑗 = 1,2; 𝑘 = 1,2, 

�̂�1𝑡 = −0.5327𝑌1𝑡−1 + 0.1310𝑌2𝑡−1 − 0.1233𝑌1𝑡−2

− 0.0694𝑌2𝑡−2                                (82) 

�̂�𝜖1𝑡
2 = 0.0006930 
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𝑓𝑜𝑟 𝑖 = 2; 𝑗 = 1,2; 𝑘 = 1,2, 

�̂�2𝑡 = −0.179𝑌1𝑡−1 + 0.1518𝑌2𝑡−1 − 0.053𝑌1𝑡−2

+ 0.1001𝑌2𝑡−2                                      (83) 

�̂�𝜖2𝑡
2 = 0.001616 

 

The parameter estimates in Equations (82) and (83) are the input values for the 

computations of the autocorrelations. Further inputs for the autocorrelations and cross-

autocorrelations are the estimates of autocovariances and cross-autocovariances whose 

model is presented as, 

  

𝛾𝑖𝑡,𝑗𝑡(𝑙) = ∑ 𝜑𝑘.𝑖𝑗𝛾𝑖𝑡(𝑙),𝑗𝑡(𝑘)   

2

𝑘=1

                                                                                                     (84) 

 

𝑓𝑜𝑟 𝑖 = 1, 2; 𝑗 = 1,2; 𝑙 = 1,2,3, Table 1 presents the estimates. 

 

Table 1: Autocovariance and Cross-autocovariance Estimates 

𝑳𝒂𝒈 𝒍  𝜸𝟏𝒕,𝟏𝒕(𝒍)  𝜸𝟏𝒕,𝟐𝒕(𝒍)  𝜸𝟐𝒕,𝟏𝒕(𝒍)  𝜸𝟐𝒕,𝟐𝒕(𝒍)  

1 -0.00048692 0.00026391 -0.00014413 0.00030496 

2 0.000125890 -0.00020959 0.00000518 0.00016932 

3 0.000053980 0.00011425 -0.00009412 0.00016829 

 

The lag length in Table 1 is arbitrary chosen for increasing numbers of autocorrelations 

and cross-autocorrelations. 

 

Estimation of Variance of 𝒀𝟏𝒕  

 

From Equation (11), k =1, 2; j = 1,2 result to the following model 

𝛾1𝑡,1𝑡 = ∅1.11𝛾1𝑡,1𝑡(1) + ∅1.12𝛾1𝑡,2𝑡(1) + ∅2.11𝛾1𝑡,1𝑡(2) + ∅2.12𝛾1𝑡,2𝑡(2)

+ 𝜎𝜖1𝑡
2                   (85)  

 

From the estimates of Equation (84) and Table 1, therefore, 

�̂�1𝑡,1𝑡 = 0.0009860 

 

Autocorrelations of 𝒀𝟏𝒕 𝒂𝒏𝒅 𝒀𝟏𝒕(𝒍) 

 From Equation (22), 
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𝜌1𝑡,1𝑡(𝑙) = {

1                                              , 𝑙 = 0                    
∑ ∑ 𝜑𝑘.1𝑗𝛾1𝑡(𝑙),𝑗𝑡(𝑘) 

2
𝑗=1

2
𝑘=1

𝛾1𝑡,1𝑡

, 𝑙 = ±1, ±2, ± ⋯
                                                  (86) 

 

Cross-Autocorrelations of 𝒀𝟏𝒕 and 𝒀𝟐𝒕(𝒍) 

From Equation (49), 

 

𝜌1𝑡,2𝑡(𝑙) =
∑ ∑ 𝜑𝑘.1𝑗𝛾2𝑡(𝑙),𝑗𝑡(𝑘) 

2
𝑗=1

2
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

 , 𝑙

= 0,1,2, …                                                              (87) 

 

 

Estimation of Variance of 𝒀𝟐𝒕 

From Equation (25), k =1, 2; j = 1,2 result to the following model 

 

𝛾2𝑡,2𝑡 = ∅1.21𝛾2𝑡,1𝑡(1) + ∅1.22𝛾2𝑡,2𝑡(1) + ∅2.21𝛾2𝑡,1𝑡(2) + ∅2.22𝛾2𝑡,2𝑡(2)

+ 𝜎𝜖2𝑡
2                  (88)  

 

From the estimates of Equation (83) and Table 1, therefore, 

 

�̂�2𝑡,2𝑡 = 0.0017048 

 

Autocorrelations of 𝒀𝟐𝒕 𝒂𝒏𝒅 𝒀𝟐𝒕(𝒍) 

 From Equation (38), 

 

𝜌2𝑡,2𝑡(𝑙) = {

1                                              , 𝑙 = 0                    
∑ ∑ 𝜑𝑘.2𝑗𝛾2𝑡(𝑙),𝑗𝑡(𝑘) 

2
𝑗=1

2
𝑘=1

𝛾1𝑡,1𝑡

, 𝑙 = ±1, ±2, ± ⋯
                                               (89) 

 

Cross-Autocorrelations of 𝒀𝟐𝒕 and 𝒀𝟏𝒕(𝒍) 

From Equation (59), 

 

𝜌2𝑡,1𝑡(𝑙) =
∑ ∑ 𝜑𝑘.2𝑗𝛾1𝑡(𝑙),𝑗𝑡(𝑘) 

2
𝑗=1

2
𝑘=1

√𝛾1𝑡,1𝑡𝛾2𝑡,2𝑡

 , 𝑙 = 0,1,2, …                                                        (90) 
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SUMMARY OF RESULTS 

 

Table1: Estimates from MAR Model Parameters and Direct Computations 

Auto/Cross-

Autocorrelation Measure 

Variable Estimates 

from MAR 

Models 

Direct Computations 

Using Lagged 

Variables 

Autocorrelations of 𝑋1𝑡 and 

𝑋1𝑡(𝑘) 

         

𝜌1𝑡,1𝑡(1) -0.564 -0.497 

𝜌1𝑡,1𝑡(2) 0.127 0.128 

𝜌1𝑡,1𝑡(3) 0.040 0.055 

Cross-Autocorrelations of 

𝑋1𝑡 and 𝑋2𝑡(𝑘) 

 

𝜌1𝑡,2𝑡(1) 0.205 0.208 

𝜌1𝑡,2𝑡(2) -0.161 -0.165 

𝜌1𝑡,2𝑡(3) 0.081 0.089 

Autocorrelations of 𝑋2𝑡 and 

𝑋2𝑡(𝑘) 

 

𝜌2𝑡,2𝑡(1) 0.183 0.183 

𝜌2𝑡,2𝑡(2) 0.102 0.101 

𝜌2𝑡,2𝑡(3) 0.090 0.101 

Cross-Autocorrelations of 

𝑋2𝑡 and 𝑋1𝑡(𝑘) 

 

𝜌2𝑡,1𝑡(1) -0.110 -0.112 

𝜌2𝑡,1𝑡(2) 0.003 0.004 

𝜌2𝑡,1𝑡(3) -0.073 -0.073 

 

 

 

 

 

 

 

 

 

SUMMARY 

Multivariate time series models, such as Vector Autoregressive Models (VAMs), construct 

various associations between response time variables and associated predictive lag terms. 

The paper's main focus was on using a model parameter technique to define and evaluate 

the fundamental features of two-dimensional Vector Autoregressive Models. This method 

differs from the typical way of using lagging variables across time as input variables for 

variance, autocovariance, cross-autocovariance, autocorrelations, and cross-

autocorrelations computations. Crude oil production quantity and price return series 

representing 𝑌1𝑡 and 𝑌2𝑡 were utilized as response time variables in bivariate VAR models 
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to illustrate and validate the model developed. The variances were calculated using model 

parameter estimates and validated with numerical examples. To verify the autocorrelations 

and cross-autocorrelation models created using the model parameters, estimates obtained 

from ordinary least squares regression and other statistical measures were utilized as entry 

variables. This method differs from [1], [8] and [9], a typical methodology of using lag 

terms of response time variables for direct computations of the above measures. Table 1 

summarizes the results obtained using the two approaches, and numerical illustrations 

show that the estimates from the two methods for computations of variances, 

autocovariances, autocorrelations, cross-autocovariances and cross-autocorrelations for 

Vector Autoregressive Models are accurate and comparable. 

 

 

CONCLUSION 

Every model in statistics has some basic properties that describe the model's 

distribution or process, depending on the situation. The goal of this research was to 

develop a model-based approach for computatoion of some basic VAR model 

properties. The results of this study show that the model-based method of computing 

autocovariances, cross-autocovariances, autocorrelations, and cross-autocorrelations 

in VAR models provides the same level of accuracy as the traditional method. This 

approach is new and complimentary to the already established method of examining 

the aforementioned statistical properties vector Autoregressive Models.  
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